Publications by authors named "Nipun Jayatissa"

Article Synopsis
  • The cortical thick ascending limb (CTAL) of the kidney was first characterized by Maurice Burg in 1973, revealing its role in actively reabsorbing NaCl while having low water permeability, allowing it to produce dilute urine during high water intake.
  • In the 1980s, Greger and Schlatter identified the specific membrane transport processes for NaCl, which were further characterized at the molecular level by various researchers in the 1990s using cDNA cloning and advancements in genome sequencing.
  • By the 2010s, mathematical models were developed to explore CTAL transport mechanisms, leading to investigations into Burg's 'static head' phenomenon, the adaptation of short CTALs in juxtamedullary nephrons,
View Article and Find Full Text PDF

Epidermal growth factor (EGF) has important effects in the renal collecting duct to regulate salt and water transport. To identify elements of EGF-mediated signaling in the rat renal inner medullary collecting duct (IMCD), we carried out phosphoproteomic analysis. Biochemically isolated rat IMCD suspensions were treated with 1 µM of EGF or vehicle for 30 min.

View Article and Find Full Text PDF

Vasopressin controls water permeability in the renal collecting duct by regulating the water channel protein, aquaporin-2 (AQP2). Phosphoproteomic studies have identified multiple proteins that undergo phosphorylation changes in response to vasopressin. The kinases responsible for the phosphorylation of most of these sites have not been identified.

View Article and Find Full Text PDF

Background: Protein phosphorylation is one of the most prevalent posttranslational modifications involved in molecular control of cellular processes, and is mediated by over 520 protein kinases in humans and other mammals. Identification of the protein kinases responsible for phosphorylation events is key to understanding signaling pathways. Unbiased phosphoproteomics experiments have generated a wealth of data that can be used to identify protein kinase targets and their preferred substrate sequences.

View Article and Find Full Text PDF