Mycobacterium abscessus (Mabs) drives life-shortening mortality in cystic fibrosis (CF) patients, primarily because of its resistance to chemotherapeutic agents. To date, our knowledge on the host and bacterial determinants driving Mabs pathology in CF patient lung remains rudimentary. Here, we used human airway organoids (AOs) microinjected with smooth (S) or rough (R-)Mabs to evaluate bacteria fitness, host responses to infection, and new treatment efficacy.
View Article and Find Full Text PDFRespiratory infections remain a major global health concern. Tuberculosis is one of the top 10 causes of death worldwide, while infections with Non-Tuberculous Mycobacteria are rising globally. Recent advances in human tissue modeling offer a unique opportunity to grow different human "organs" in vitro, including the human airway, that faithfully recapitulates lung architecture and function.
View Article and Find Full Text PDFRegulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2020
Tuberculosis continues to kill millions of people each year. The main difficulty in eradication of the disease is the prolonged duration of treatment, which takes at least 6 months. Persister cells have long been associated with failed treatment and disease relapse because of their phenotypical, though transient, tolerance to drugs.
View Article and Find Full Text PDFPrevious studies have described that tumor organoids can capture the diversity of defined human carcinoma types. Here, we describe conditions for long-term culture of human mucosal organoids. Using this protocol, a panel of 31 head and neck squamous cell carcinoma (HNSCC)-derived organoid lines was established.
View Article and Find Full Text PDFOrganoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells.
View Article and Find Full Text PDF, the pathogen that causes tuberculosis, primarily infects macrophages but withstands the host cell's bactericidal effects. EsxA, also called virulence factor 6-kDa early secretory antigenic target (ESAT-6), is involved in phagosomal rupture and cell death. We provide confocal and electron microscopy data showing that bacteria grown without detergent retain EsxA on their surface.
View Article and Find Full Text PDFStem-cell-derived organoids recapitulate in vivo physiology of their original tissues, representing valuable systems to model medical disorders such as infectious diseases. Cryptosporidium, a protozoan parasite, is a leading cause of diarrhoea and a major cause of child mortality worldwide. Drug development requires detailed knowledge of the pathophysiology of Cryptosporidium, but experimental approaches have been hindered by the lack of an optimal in vitro culture system.
View Article and Find Full Text PDFFront Microbiol
December 2017
For many decades, human infectious diseases have been studied in immortalized cell lines, isolated primary cells from blood and a range of animal hosts. This research has been of fundamental importance in advancing our understanding of host and pathogen responses but remains limited by the absence of multicellular context and inherent differences in animal immune systems that result in altered immune responses. Recent developments in stem cell biology have led to the growth of organoids that faithfully recapitulate a variety of human tissues including lung, intestine and brain amongst many others.
View Article and Find Full Text PDFAspergillus fumigatus is an inhaled fungal pathogen of human lungs, the developmental growth of which is reliant upon Ca2+-mediated signalling. Ca2+ signalling has regulatory significance in all eukaryotic cells but how A. fumigatus uses intracellular Ca2+ signals to respond to stresses imposed by the mammalian lung is poorly understood.
View Article and Find Full Text PDF