Publications by authors named "Ninni E Olafsen"

The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor which in certain cancer types drives pro-survival processes that facilitate tumorigenesis, malignant cell migration, invasion, and metastasis. Much of AHR's pro-tumorigenic action is due to its activation by the oncometabolite, kynurenine. Because of this AHR antagonists are being actively investigated as new anti-tumor therapy.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a versatile ligand-dependent transcription factor involved in diverse biological processes, from metabolic adaptations to immune system regulation. Recognising its pivotal role in cancer immunology, AHR has become a promising target for cancer therapy. Here we report the discovery and structure-activity relationship studies of novel AHR antagonists.

View Article and Find Full Text PDF

PARP7 is a member of the ADP-ribosyltransferase diphtheria toxin-like (ARTD) family and acts as a repressor of type I interferon (IFN) signaling. PARP7 inhibition causes tumor regression by enhancing antitumor immunity, which is dependent on the stimulator of interferon genes (STING) pathway, TANK-binding kinase 1 (TBK1) activity, and cytotoxic CD8 T cells. To better understand PARP7's role in cancer, we generated and characterized PARP7 knockout (Parp7) EO771 mouse mammary cancer cells in vitro and in a preclinical syngeneic tumor model using catalytic mutant mice.

View Article and Find Full Text PDF

The mono-ADP-ribosyltransferase PARP7 has emerged as a key negative regulator of cytosolic NA-sensors of the innate immune system. We apply a rational design strategy for converting a pan-PARP inhibitor into a potent selective PARP7 inhibitor (KMR-206). Consistent with studies using the structurally distinct PARP7 inhibitor RBN-2397, co-treatment of mouse embryonic fibroblasts with KMR-206 and NA-sensor ligands synergistically induced the expression of the type I interferon, IFN-β.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that binds to xenobiotics and activates expression of response elements to metabolize these compounds. The AHR pathway has been associated with a long list of diseases including cancer; however, it is debated whether AHR is tumorigenic or tumour-inhibiting. In particular, there are contradictory reports in the literature regarding the effects of AHR expression level on metastatic breast cancer.

View Article and Find Full Text PDF

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-adenosine diphosphate (ADP)-ribose polymerase (TIPARP/PARP7), an aryl hydrocarbon receptor (AHR) target gene and mono-ADP-ribosyltransferase, acts as part of a negative feedback loop to repress AHR signaling. This process is prevented by a single H532A mutation in TIPARP that destroys its catalytic activity. We hypothesized that the loss of TIPARP catalytic activity would increase sensitivity to TCDD-induced toxicity in vivo.

View Article and Find Full Text PDF

ADP-ribosylation is a post-translational protein modification catalyzed by a family of proteins known as poly-ADP-ribose polymerases. PARP7 (TIPARP; ARTD14) is a mono-ADP-ribosyltransferase involved in several cellular processes, including responses to hypoxia, innate immunity and regulation of nuclear receptors. Since previous studies suggested that PARP7 was regulated by 17β-estradiol, we investigated whether PARP7 regulates estrogen receptor α signaling.

View Article and Find Full Text PDF