The vertebrate heart is regulated by excitatory adrenergic and inhibitory cholinergic innervations, as well as non-adrenergic non-cholinergic (NANC) factors that may be circulating in the blood or released from the autonomic nerves. As an example of NANC signaling, an increased histaminergic tone, acting through stimulation of H receptors, contributes markedly to the rise in heart rate during digestion in pythons. In addition to the direct effects of histamine, it is also known that histamine can reinforce the cholinergic and adrenergic signaling.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
March 2020
Endothelin-1 (ET-1) is a very potent vasoactive peptide released from endothelial cells, and ET-1 plays an important role in the maintenance and regulation of blood pressure in mammals. ET-1 signaling is mediated by two receptors: ET and ET. In mammals, ET receptors are located on vascular smooth muscle where they mediate vasoconstriction.
View Article and Find Full Text PDFJ Comp Physiol B
January 2018
The cardiovascular system of vertebrates is regulated by a vast number of regulatory factors, including histamine. In pythons, histamine induces a strong tachycardia and dilates the systemic vasculature, which resembles the cardiovascular response to the elevated metabolic rate during digestion. In fact, there is an important role of increased histaminergic tone on the heart during the initial 24 h of digestion in pythons.
View Article and Find Full Text PDFTo determine the costs of pulmonary ventilation without imposing severe oxygen limitations or acidosis that normally accompany exposures to hypoxia or hypercapnia, we opted to pharmacologically stimulate ventilation with doxapram (5 and 10 mg kg(-1)) in alligators. Doxapram is used clinically to alleviate ventilatory depression in response to anaesthesia and acts primarily on the peripheral oxygen-sensitive chemoreceptors. Using this approach, we investigated the hypothesis that pulmonary ventilation is relatively modest in comparison to resting metabolic rate in crocodilians and equipped seven juvenile alligators with masks for concurrent determination of ventilation and oxygen uptake.
View Article and Find Full Text PDFEndogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
November 2013
The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow.
View Article and Find Full Text PDFTurtles of the genus Trachemys show a remarkable ability to survive prolonged anoxia. This is achieved by a strong metabolic depression, redistribution of blood flow and high levels of antioxidant defence. To understand whether nitric oxide (NO), a major regulator of vasodilatation and oxygen consumption, may be involved in the adaptive response of Trachemys to anoxia, we measured NO metabolites (nitrite, S-nitroso, Fe-nitrosyl and N-nitroso compounds) in the plasma and red blood cells of venous and arterial blood of Trachemys scripta turtles during normoxia and after anoxia (3 h) and reoxygenation (30 min) at 21°C, while monitoring blood oxygen content and circulatory parameters.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2012
Hypoxic pulmonary vasoconstriction (HPV) is an adaptive response that diverts pulmonary blood flow from poorly ventilated and hypoxic areas of the lung to more well-ventilated parts. This response is important for the local matching of blood perfusion to ventilation and improves pulmonary gas exchange efficiency. HPV is an ancient and highly conserved response, expressed in the respiratory organs of all vertebrates, including lungs of mammals, birds, and reptiles; amphibian skin; and fish gills.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
May 2012
Pythons exhibit a doubling of heart rate when metabolism increases several times during digestion. Pythons, therefore, represent a promising model organism to study autonomic cardiovascular regulation during the postprandial state, and previous studies show that the postprandial tachycardia is governed by a release of vagal tone as well as a pronounced stimulation from nonadrenergic, noncholinergic (NANC) factors. Here we show that infusion of plasma from digesting donor pythons elicit a marked tachycardia in fasting snakes, demonstrating that the NANC factor resides in the blood.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
May 2012
Hydrogen sulfide (H(2)S), nitric oxide (NO) and nitrite (NO(2)(-)) are formed in vivo and are of crucial importance in the tissue response to hypoxia, particularly in the cardiovascular system, where these signaling molecules are involved in a multitude of processes including the regulation of vascular tone, cellular metabolic function and cytoprotection. This report summarizes current advances on the mechanisms by which these signaling pathways act and may have evolved in animals with different tolerance to hypoxia, as presented and discussed during the scientific sessions of the annual meeting of the Society for Experimental Biology in 2011 in Glasgow. It also highlights the need and potential for a comparative approach of study and collaborative effort to identify potential link(s) between the signaling pathways involving NO, nitrite and H(2)S in the whole-body responses to hypoxia.
View Article and Find Full Text PDFRecent research has shown that the endogenous gas hydrogen sulphide (H2S) is a signalling molecule of considerable biological potential and has been suggested to be involved in a vast number of physiological processes. In the vascular system, H2S is synthesized from cysteine by cystathionine-γ-lyase (CSE) in smooth muscle cells (SMC) and 3- mercaptopyruvate sulfuresterase (3MST) and CSE in the endothelial cells. In pulmonary and systemic arteries, H2S induces relaxation and/or contraction dependent on the concentration of H2S, type of vessel and species.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
May 2010
Systemic vascular resistance (R(sys)) of freshwater turtles increases substantially during anoxia, but the underlying mechanisms are not fully understood. We investigated whether hydrogen sulfide (H(2)S), an endogenously produced metabolite believed to be an O(2) sensor/transducer of vasomotor tone, contributes to the increased R(sys) of anoxic red-eared slider turtles (Trachemys scripta). Vascular infusion of the H(2)S donor NaHS in anesthetized turtles at 21 degrees C and fully recovered normoxic turtles at 5 degrees C and 21 degrees C revealed H(2)S to be a potent vasoconstrictor of the systemic circulation.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
March 2009
The intrinsic heart rate of most vertebrates studied, including humans, is elevated during digestion, suggesting that a nonadrenergic-noncholinergic factor contributes to the postprandial tachycardia. The regulating factor, however, remains elusive and difficult to identify. Pythons can ingest very large meals, and digestion is associated with a marked rise in metabolism that is sustained for several days.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2008
O2 chemoreceptors elicit cardiorespiratory reflexes in all vertebrates, but consensus on O2-sensing signal transduction mechanism(s) is lacking. We recently proposed that hydrogen sulfide (H2S) metabolism is involved in O2 sensing in vascular smooth muscle. Here, we examined the possibility that H2S is an O2 sensor in trout chemoreceptors where the first pair of gills is a primary site of aquatic O2 sensing and the homolog of the mammalian carotid body.
View Article and Find Full Text PDFHypoxic pulmonary vasoconstriction (HPV) is an adaptive response that diverts pulmonary blood flow from poorly ventilated and hypoxic areas of the lung to better ventilated parts, matching blood perfusion to ventilation. HPV is an ancient and highly conserved response expressed in the respiratory organs of all vertebrates. However, the underlying mechanism and the role of the endothelium remain elusive.
View Article and Find Full Text PDFHydrogen sulfide (H(2)S) is rapidly emerging as a biologically significant signaling molecule. Studies published before 2000 report low or undetectable H(2)S (usually as total sulfide) levels in blood or plasma, whereas recent work has reported sulfide concentrations between 10 and 300 microM, suggesting it acts as a circulating signal. In the first series of experiments, we used a recently developed polarographic sensor to measure the baseline level of endogenous H(2)S gas and turnover of exogenous H(2)S gas in real time in blood from numerous animals, including lamprey, trout, mouse, rat, pig, and cow.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
November 2007
The present study investigates adrenergic regulation of the systemic and pulmonary circulations of the anaesthetised South American rattlesnake, Crotalus durissus. Haemodynamic measurements were made following bolus injections of adrenaline and adrenergic antagonists administered through a systemic arterial catheter. Adrenaline caused a marked systemic vasoconstriction that was abolished by phentolamine, indicating this response was mediated through alpha-adrenergic receptors.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2007
Digestion of large meals in pythons produces substantial increases in heart rate and cardiac output, as well as a dilation of the mesenteric vascular bed leading to intestinal hyperemia, but the mediators of these effects are unknown. Bolus intra-arterial injections of python neurotensin ([His(3), Val(4), Ala(7)]NT) (1 - 1,000 pmol/kg) into the anesthetized ball python Python regius (n = 7) produced a dose-dependent vasodilation that was associated with a decrease in systemic pressure (P(sys)) and increase in systemic blood flow (Q(sys)). There was no effect on pulmonary pressure and conductance.
View Article and Find Full Text PDFRespir Physiol Neurobiol
October 2007
Pulmonary ventilation requires energy, but the estimated costs of breathing in reptiles vary from 1 to 30% of resting metabolic rate. The low values have been estimated from changes in oxygen uptake during hypoxia or hypercapnia, but it remains possible that these treatments affected metabolism. We equipped alligators with masks for simultaneous measurements of ventilation and oxygen uptake during hypercapnia, hypoxia and bilateral vagotomy.
View Article and Find Full Text PDFSynbranchus marmoratus is a facultative air-breathing fish, which uses its buccal cavity as well as its gills for air-breathing. S. marmoratus shows a very pronounced tachycardia when it surfaces to air-breathe.
View Article and Find Full Text PDFRespir Physiol Neurobiol
November 2006
Lung structure of reptiles is very diverse ranging from single chambered lungs with a simple structure to more complex and multi-chambered lungs. Increased structural complexity resulted from the evolution of smaller gas exchange units and larger surface area, which increases the pulmonary diffusive capacity for O(2). However, increased structural complexity probably also increases the possibilities for ventilation-perfusion (V /Q ) heterogeneity, which exerts significant constraints on gas exchange.
View Article and Find Full Text PDFThe effects of adrenergic stimulation on mean circulatory filling pressure (MCFP), central venous pressure (P(CV)) and stroke volume (Vs), as well as the effects of altered MCFP through changes of blood volume were investigated in rattlesnakes (Crotalus durissus). MCFP is an estimate of the upstream pressure driving blood towards the heart and is determined by blood volume and the activity of the smooth muscle cells in the veins (venous tone). MCFP can be determined as the plateau in P(CV) during a total occlusion of blood flow from the heart.
View Article and Find Full Text PDFThe effects of endothelin-1 (ET-1) on systemic and pulmonary circulation were investigated in anaesthetised freshwater turtles (Trachemys scripta) instrumented with arterial catheters and blood flow probes. Bolus intra-arterial injections of ET-1 (0.4-400 pmol kg(-1)) caused a dose-dependent systemic vasodilatation that was associated with a decrease in systemic pressure (P(sys)) and a rise in systemic blood flow (Q(sys)), causing systemic conductance (G(sys)) to increase.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
October 2005
The roles that nitric oxide (NO) plays in the cardiovascular system of reptiles are reviewed, with particular emphasis on its effects on central vascular blood flows in the systemic and pulmonary circulations. New data is presented that describes the effects on hemodynamic variables in varanid lizards of exogenously administered NO via the nitric oxide donor sodium nitroprusside (SNP) and inhibition of nitric oxide synthase (NOS) by l-nitroarginine methyl ester (l-NAME). Furthermore, preliminary data on the effects of SNP on hemodynamic variables in the tegu lizard are presented.
View Article and Find Full Text PDF