Publications by authors named "Ningyi Tiao"

Background: Despite the availability of hundreds of cancer drugs, there is insufficient data on the efficacy of these drugs on the extremely heterogeneous tumor cell populations of glioblastoma (GBM).

Results: The PKIS of 357 compounds was initially evaluated in 15 different GSC lines which then led to a more focused screening of the 21 most highly active compounds in 11 unique GSC lines using HTS screening for cell viability. We further validated the HTS result with the second-generation PLK1 inhibitor volasertib as a single agent and in combination with ionizing radiation (IR).

View Article and Find Full Text PDF

Intercellular cell adhesion molecule 1 (ICAM-1; also known as CD54) is overexpressed in bevacizumab-resistant glioblastoma. In the present study, we tested our hypothesis that highly expressed ICAM-1 mediates glioblastoma's resistance to antiangiogenic therapy. We validated ICAM-1 overexpression in tumors resistant to antiangiogenic therapy using real-time polymerase chain reaction, immunohistochemistry, and Western blotting.

View Article and Find Full Text PDF

Background: Glioblastoma highly expresses the proto-oncogene MET in the setting of resistance to bevacizumab. MET engagement by hepatocyte growth factor (HGF) results in receptor dimerization and autophosphorylation mediating tumor growth, invasion, and metastasis. Evasive revascularization and the recruitment of TIE2-expressing macrophages (TEMs) are also triggered by anti-VEGF therapy.

View Article and Find Full Text PDF

Purpose: Antiangiogenic therapy is commonly being used for the treatment of glioblastoma. However, the benefits of angiogenesis inhibitors are typically transient and resistance often develops. Determining the mechanism of treatment failure of the VEGF monoclonal antibody bevacizumab for malignant glioma would provide insight into approaches to overcome therapeutic resistance.

View Article and Find Full Text PDF

Purpose: Antiangiogenic therapy is effective in blocking vascular permeability, inhibiting vascular proliferation, and slowing tumor growth, but studies in multiple cancer types have shown that tumors eventually acquire resistance to blockade of blood vessel growth. Currently, the mechanisms by which this resistance occurs are not well understood.

Experimental Design: In this study, we evaluated the effects of neutrophils on glioma biology both in vitro and in vivo and determined target genes by which neutrophils promote the malignant glioma phenotype during anti-VEGF therapy.

View Article and Find Full Text PDF

Purpose: The aim of this study was to show preclinical efficacy and clinical development potential of NVP-BKM120, a selective pan class I phosphatidylinositol-3 kinase (PI3K) inhibitor in human glioblastoma (GBM) cells in vitro and in vivo.

Experimental Design: The effect of NVP-BKM120 on cellular growth was assessed by CellTiter-Blue assay. Flow cytometric analyses were carried out to measure the cell-cycle, apoptosis, and mitotic index.

View Article and Find Full Text PDF

The development of new therapies for ependymoma is dramatically limited by the absence of optimal in vivo and in vitro models. Successful ependymoma treatment requires a profound understanding of the disease's biological characteristics. This study focuses on the establishment and characterization of in vivo and in vitro models of ependymoma to study the molecular pathways necessary for growth and progression in ependymoma.

View Article and Find Full Text PDF

Several small molecules that inhibit the PI3 kinase (PI3K)-Akt signaling pathway are in clinical development. Although many of these molecules have been effective in preclinical models, it remains unclear whether this strategy alone will be sufficient to interrupt the molecular events initiated and maintained by signaling along the pathways because of the activation of other pathways that compensate for the inhibition of the targeted kinase. In this study, we performed a synthetic lethality screen to identify genes or pathways whose inactivation, in combination with the PI3K inhibitors PX-866 and NVPBEZ-235, might result in a lethal phenotype in glioblastoma multiforme (GBM) cells.

View Article and Find Full Text PDF

Aberrant genetic alternations in human gliomas, such as amplification of epidermal growth factor receptor, mutation and/or deletion of tumor suppressor gene PTEN, and mutations of PIK3CA, contribute to constitutive activation of the phosphatidylinositol 3-kinase (PI3K) pathway. We investigated the potential antitumor activity of NVP-BEZ235, which is a novel dual PI3K/mammalian target of rapamycin (mTOR) inhibitor in gliomas. The compound suppressed glioma cell proliferation with IC(50) values in the low nanomolar range by specifically inhibiting the activity of target proteins including Akt, S6K1, S6, and 4EBP1 in the PI3K/Akt/mTOR signaling pathway.

View Article and Find Full Text PDF