The spread of antibiotic resistant pathogens and antibiotic resistance genes (ARGs) in the environment poses a serious threat to public health. However, existing methods are difficult to effectively remove antibiotic resistant pathogens and ARGs from the environment. In this study, we synthesized a new acridine-based photosensitizer, 2,7-dibromo-9-mesityl-10-methylacridinium perchlorate (YM-3), by the heavy atom effect, which could photodynamically inactivate antibiotic resistant pathogens and reduce ARGs by generating singlet oxygen (O) in an aqueous environment.
View Article and Find Full Text PDFRecently, solar-driven seawater desalination has received extensive attention since it can obtain considerable freshwater by accelerating water evaporation at the air-water interface through solar evaporators. However, the high air-water interface temperature can cause volatile organic compounds (VOCs) to enter condensed freshwater and result in water quality safety risk. In this work, an antioxidative solar evaporator, which was composed of MoS as the photothermal material, expandable polyethylene (EPE) foam as the insulation material, polytetrafluoroethylene (PTFE) plate as the corrosion resistant material, and fiberglass membrane (FB) as the seawater delivery material, was fabricated for the first time.
View Article and Find Full Text PDFActivation of peroxymonosulfate (PMS) by Fe is a green oxidation process for degradation of organic contaminants. However, the formation of iron mud and low PMS utilization lead to the decreased oxidation efficiency. In this work, commercial MoS particles were used as the catalyst for boosting the Fe/PMS process for carbamazepine (CBZ) removal.
View Article and Find Full Text PDF