Heterometallic supramolecules, known for their unique synergistic effects, have shown broad applications in photochemistry, host-guest chemistry, and catalysis. However, there are great challenges to precisely construct heterometallic supramolecules rather than a statistical mixture, due to the limited metal-ion selectivity of coordination units. In particular, heterometallic architectures precisely encoded with different metal ions usually fail to form in a one-pot method when only one type of coordinated motif exists due to its poor metal-ion selectivity.
View Article and Find Full Text PDFThe mechanofluorochromic (MFC) characteristics of anthracene-based acceptor-donor-acceptor (A-D-A) fluorescent molecules are explored through a comprehensive investigation of their photophysical behaviors. Six 9,10-diheteroarylanthracene derivatives with varying acceptor groups (pyridin-4-yl, pyridin-3-yl, pyridin-2-yl, pyrimidin-5-yl, pyrazinyl and quinoxalinyl) are synthesized and systematically characterized. The photophysical properties in both solution and solid-state are examined, revealing subtle yet significant influences of the spatial arrangement and number of nitrogen atoms within the acceptor group on fluorescence emission.
View Article and Find Full Text PDFIn this study, two trigonal prisms based on the 1,3,5-triazine motif ( and ), distinguished by hydrophobic groups, were prepared by the self-assembly of tritopic terpyridine ligands and Zn(II) ions. and exhibited high luminescence efficiencies in the solid state, overcoming the fluorescence quenching of the 1,3,5-triazine group caused by π-π interactions. Notably, and exhibited different luminescence behaviors in the solution state and aggregation state.
View Article and Find Full Text PDFChem Commun (Camb)
December 2022
Two metallo-triangles, SA and SB, with -TPE motifs were constructed, and their fluorescence properties were explored. Compared with the dilute solution, both triangles SA and SB exhibited significant AIE behavior in the aggregated states. Moreover, the shorter version SA showed higher quantum yields than SB in the aggregated states.
View Article and Find Full Text PDFDye aggregates have attracted a great deal of attention due to their widespread applications in organic light-emitting devices, light-harvesting systems, etc. However, the strategies to precisely control chromophores with specific spatial arrangements still remain a great challenge. In this work, a series of double- and triple-decker supramolecular complexes are successfully constructed by coordination-driven self-assembly of carefully designed shape-complementary ligands, one claw-like tetraphenylethylene (TPE)-based host ligand and three tetratopic or ditopic guest ligands.
View Article and Find Full Text PDFCompatibility, a critical issue between sensing material and host structure, significantly influences the detecting performance (e.g., sensitive, signal-to-noise ratio) of the embedded sensor.
View Article and Find Full Text PDFMicrocapsule based self-healing concrete can automatically repair damage and improve the durability of concrete structures, the performance of which depends on the binding behavior between the microcapsule wall and cement matrix. However, conventional experimental methods could not provide detailed information on a microscopic level. In this paper, through molecular dynamics simulation, three composite models of Tobermorite (Tobermorite 9 Å, Tobermorite 11 Å, Tobermorite 14 Å), a mineral similar to Calcium-Silicate-Hydrate (C-S-H) gel, with the linear urea-formaldehyde (UF), the shell of the microcapsule, were established to investigate the mechanical properties and interface binding behaviour of the Tobermorite/UF composite.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2019
A nitrogen-starving isolation strategy was developed for the first time to screen bacteria with high calcium-precipitating activity (CPA) for bioremediation of damage in porous media. Meanwhile, a novel mini-tube method based on the detection of insoluble Ca was established to evaluate the CPA of the isolates. A low-nitrogen-demanding strain B6, identified as Bacillus sp.
View Article and Find Full Text PDFIn recent decades, microcapsules containing phase change materials (microPCMs) have been the center of much attention in the field of latent thermal energy storage. The aim of this work was to prepare and investigate the microstructure and thermal conductivity of microPCMs containing self-assembled graphene/organic hybrid shells. Paraffin was used as a phase change material, which was successfully microencapsulated by graphene and polymer forming hybrid composite shells.
View Article and Find Full Text PDFMicroencapsulated rejuvenator has been attracted much attention for self-healing bitumen. The diffusion coefficient is one of the key parameters to estimate the feasibility of rejuvenator to age bitumen. The objective of this research was to evaluate diffusion behaviors of microencapsulated rejuvenator in aged bitumen by a FTIR-ATR method.
View Article and Find Full Text PDFThe aim of this work was to evaluate the self-healing behaviors of bitumen using microcapsules containing rejuvenator by a modified fracture healing-refracture method through a repetitive tension test. Microcapsules had mean size values of 10, 20 and 30 μm with a same core/shell ratio of 1/1. Various microcapsules/bitumen samples were fabricated with microcapsule contents of 1.
View Article and Find Full Text PDFAn optimized strategy for the enhancement of microbially induced calcium precipitation including spore viability ensurance, nutrient selection and O2 supply was developed. Firstly, an optimal yeast extract concentration of 5 g/l in sporulation medium was determined based on viable spore yield and spore viability. Furthermore, the effects of certain influential factors on microbial calcium precipitation process of H4 in the presence of oxygen releasing tablet (ORT) were evaluated.
View Article and Find Full Text PDFEncapsulation of healing agents embedded in a material matrix has become one of the major approaches for achieving self-healing function in cementitious materials in recent years. A novel type of microcapsules based self-healing cementitious composite was developed in Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University. In this study, both macro performance and the microstructure of the composite are investigated.
View Article and Find Full Text PDFA review of the research activities and achievements at Shenzhen University is conducted in this paper concerning the creation and further development of novel microcapsule based self-resilience systems for their application in concrete structures. After a brief description of pioneering works in the field starting about 10 years ago, the principles raised in the relevant research are examined, where fundamental terms related to the concept of resilience are discussed. Several breakthrough points are highlighted concerning the three adopted comprehensive self-resilience systems, namely physical, chemical and microbial systems.
View Article and Find Full Text PDFA novel microcapsule-based self-immunity system for reinforced concrete is proposed. Its feasibility for hindering the corrosion of steel rebar by means of lifting the threshold value of [Cl(-)]/[OH(-)] is discussed. Precisely controlled release behavior enables corrosion protection in the case of depassivation.
View Article and Find Full Text PDFSteel is prone to corrosion induced by chloride ions, which is a serious threat to reinforced concrete structures, especially in marine environments. In this work, we report a novel capsule-based self-recovery system that utilizes chloride ions as a trigger. These capsules, which are functionalized via a smart response to chloride ions, are fabricated using a silver alginate hydrogel that disintegrates upon contact with chloride ions, and thereby releases the activated core materials.
View Article and Find Full Text PDFAn investigation was performed by using carbon fiber-reinforced polymer (CFRP) as the anode material in the impressed current cathodic protection (ICCP) system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests.
View Article and Find Full Text PDFAdequate selection of material constituents and test methods are necessary for workability specifications and performance of hardened concrete. An experimental program was performed to evaluate the suitability of various test methods for workability assessment and to propose performance specifications of prestressed concrete. In total, 33 self-consolidating concrete (SCC) mixtures made with various mixture proportioning parameters, including maximum size and type of aggregate, type and content of binder, and w/cm were evaluated.
View Article and Find Full Text PDFA new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable.
View Article and Find Full Text PDFMaterials (Basel)
September 2013
The recovery behavior for strength and impermeability of cementitious composites embedded with organic microcapsules was investigated in this study. Mortar specimens were formed by mixing the organic microcapsules and a catalyst with cement and sand. The mechanical behaviors of flexural and compression strength were tested.
View Article and Find Full Text PDF