Publications by authors named "Ningtong Zhuang"

Comprehensive immune responses are essential for eliminating pathogens but must be tightly controlled to avoid sustained immune activation and potential tissue damage. The engagement of TLR4, a canonical pattern recognition receptor, has been proposed to trigger inflammatory responses with different magnitudes and durations depending on TLR4 cellular compartmentalization. In the present study, we identify an unexpected role of Lamtor5, a newly identified component of the amino acid-sensing machinery, in modulating TLR4 signaling and controlling inflammation.

View Article and Find Full Text PDF

The coordination of restraining and priming of antiviral signaling constitute a fundamental aspect of immunological functions. However, we currently know little about the molecular events that can translate the pathogenic cues into the appropriate code for antiviral defense. Our present study reports a specific role of B cell lymphoma (Bcl)6 as a checkpoint in the initiation of the host response to cytosolic RNA viruses.

View Article and Find Full Text PDF

MicroRNAs play an important role in regulating the inflammatory response, and are critically involved in the development of inflammatory disorders, including those affecting the lungs. While the microRNA miR-221 is involved in embryonic lung branching morphogenesis and epithelial cell development, its importance in lung inflammation has not been previously explored. In our current study, expression of miR-221 was selectively decreased by exposure to lipopolysaccharides (LPS) both in vitro and in vivo.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) infection causes hepatocyte death and liver damage, which may eventually lead to cirrhosis and liver cancer. Hepatitis B virus X protein (HBx) is a key antigen that is critically involved in HBV-associated liver diseases. However, the molecular basis for its pathogenesis, particularly in liver damage, has not been well defined.

View Article and Find Full Text PDF