Publications by authors named "Ningning Song"

Neurodegenerative diseases like Parkinson's disease (PD) are intimately associated with oxidative stress due to the excessive highly reactive oxygen species (ROS), leading to the damage of dopaminergic neurons. Herein, we develop a Co-Cu dual-atom nanozyme (CoCu-DAzyme) by uniformly anchoring Co and Cu active sites onto an AlO(OH) substrate that exhibits remarkable catalase-like catalytic activity, far exceeding that of the Co or Cu single-atom counterparts. The following density functional theory calculations reveal that the Co sites efficiently enable HO adsorption, while Cu sites promote charge transfer, synergistically promoting the catalytic decomposition of HO into HO and O.

View Article and Find Full Text PDF

Hexavalent chromium (Cr(VI)) poses threat to both ecosystems and human health. Complex pollution conditions, particularly the pH levels, significantly influence the treatment process of Cr(VI). In this study, BiOBr materials were synthesized with exposed (110) facets and Bi vacancies through dual modifications at both grain and atomic scales.

View Article and Find Full Text PDF

Conducting the screening and replanting of crops with low accumulation of heavy metals can effectively reduce the risk of heavy metal accumulation in agricultural products. However, current research focuses more on the screening of crops with low accumulation of a single heavy metal. Target crops also focus more on single-type crops and varieties.

View Article and Find Full Text PDF

The remarkable properties of magnetic nanostructures have sparked considerable interest within the biomedical domain, owing to their potential for diverse applications. In targeted drug delivery systems, therapeutic molecules can be loaded onto magnetic nanocarriers and precisely guided and released within the body with the assistance of an externally applied magnetic field. However, conventional external magnetic fields generated by permanent magnets or electromagnets are limited by finite magnetic field gradients, shallow penetration depths, and low precision.

View Article and Find Full Text PDF
Article Synopsis
  • The study demonstrates that Co nanoparticle catalysts combined with magnetic induction heating can enable a rapid cold start for ammonia decomposition, overcoming challenges posed by high decomposition temperatures.
  • Successfully integrating this system with a hydrogen fuel cell, the research shows that ammonia decomposition can be achieved within 10 seconds, paving the way for ammonia's practical application in the energy sector.
View Article and Find Full Text PDF

Current total concentration-based methods for source attribution and risk assessment often overestimate metal risks, thereby impeding the formulation of effective risk management strategies. This study aims to develop a framework for source-specific risk assessment based on metal bioavailability in surface river sediments from a human-dominated seaward catchment in eastern China. Metal bioavailability was quantified using chemical fractionation results, and source apportionment was conducted using the positive matrix factorization (PMF) model.

View Article and Find Full Text PDF

Electromagnetic scattering is a routine tool for rapid, non-contact characterization of particle media. In previous work, the interaction targets of scattering intensity, scattering efficiency, and extinction efficiency of Bessel pincer light-sheet beams were all aimed at dielectric spheres. However, most particles in nature are charged.

View Article and Find Full Text PDF

Nanozymes are nanomaterials with enzyme-like catalytic properties. They are attractive reagents because they do not have the same limitations of natural enzymes (e.g.

View Article and Find Full Text PDF

Introduction: Our primary goal was to investigate the independent and combined associations of physical activity (PA) and sitting time (ST) with femoral bone health among cancer survivors aged 60 or older.

Materials And Methods: This cross-sectional study included 1159 cancer survivors aged 60 years or older who underwent femur dual-energy X-ray absorptiometry (DXA) examination from continuous National Health and Nutrition Examination Survey data sets. PA and ST were assessed by self-report, and bone health included bone mineral density (BMD) at all femoral sub-regions, osteopenia/osteoporosis of femoral neck, and total fracture.

View Article and Find Full Text PDF

Poly(urethane-urea) elastomers (PUUEs) have gained significant attention recently due to their growing demand in electronic skin, wearable electronic devices, and aerospace applications. The practical implementation of these elastomers necessitates many exceptional properties to ensure robust and safe utilization. However, achieving an optimal balance between high mechanical strength, good self-healing at moderate temperatures, and efficient flame retardancy for poly(urethane-urea) elastomers remains a formidable challenge.

View Article and Find Full Text PDF

Peanut is an economically important crop, but it is susceptible to Cr contamination. In this study, we used peanut as experimental material to investigate the effects of exogenous P, Se interacting with Cr on the nutrient growth and antioxidant system of peanut seedlings by simulating Cr (0 μM, 50 μM, and 100 μM) stress environment. The results showed that exogenous P, Se supply could mitigate irreversible damage to peanut seedlings by altering the distribution of Cr in roots and aboveground, changing root conformation, and repairing damaged cells to promote growth.

View Article and Find Full Text PDF

The impact of microplastics (MPs) as emerging pollutants on plant heavy metal toxicity has been extensively reported in vegetable-soil systems over recent years. However, little attention has been given to cultivar variations between degradable and non-degradable MPs. This study investigated the effects of degradable polylactic acid (PLA) and nondegradable polypropylene (PP) MPs on plant growth and biomarker (malonaldehyde (MDA) and antioxidant enzymes) performance in Cd-contaminated arable soil.

View Article and Find Full Text PDF

Environmental behaviors of heavy metal in soil are strongly influenced by seasonal freeze-thaw events at the mid-high altitudes. However, the potential impact mechanisms of freeze-thaw cycles on the vertical migration of heavy metal are still poor understood. This study aimed to explore how exogenous cadmium (Cd) migrated and remained in soil during the in-situ seasonal freeze-thaw action using rare earth elements (REEs) as tracers.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor and the third leading cause of cancer death worldwide. Most patients are diagnosed at an advanced stage, and systemic chemotherapy is the preferred treatment modality for advanced HCC. Curcumin (CUR) is a polyphenolic antineoplastic drug with low toxicity obtained from plants.

View Article and Find Full Text PDF
Article Synopsis
  • The corticospinal tract (CST) is crucial for voluntary movement in vertebrates, and Netrin-1 serves as a key guidance molecule for axons crossing the midline during embryonic development.
  • Research using conditional knockout (CKO) mice revealed that the lack of Netrin-1 resulted in CST axons failing to cross over correctly and instead descending on the same side of the spinal cord.
  • These findings suggest a significant role of Netrin-1 in CST formation and provide new insights into its involvement in congenital mirror movements (CMM) due to abnormal CST trajectories.
View Article and Find Full Text PDF

During the COVID-19 pandemic, a substantial quantity of disposable face masks was discarded, consisting of three layers of nonwoven fabric. However, their improper disposal led to the release of microplastics (MPs) and nanoplastics (NPs) when they ended up in aquatic environments. To analyze the release kinetics and size characteristics of these masks, release experiments were performed on commercially available disposable masks over a period of 7 days and micro- and nanoplastic releases were detected using fiber counting and nanoparticle tracking analysis.

View Article and Find Full Text PDF

The iron-modified coal gasification slag (Fe-CGS) material has excellent performance in purifying heavy-metal-contaminated water due to its good surface properties and adsorption capacities. However, it is unclear whether it can provide long-term simultaneous stabilization of Cd and As in composite-contaminated soils in extreme environments. This study investigated the long-term stabilization of Cd and As in acidic (JLG) and alkaline (QD) soils by simulating prolonged heavy rainfall with the addition of Fe-CGS.

View Article and Find Full Text PDF

Ulcerative colitis is a chronic, recurrent, and nonspecific intestinal inflammatory disease, which is difficult to cure and has the risk of deterioration into related tumors. Long-term chronic inflammatory stimulation can increase the risk of cancerization. With the signaling pathway as a key link in the regulation of tumor microenvironments, nuclear factor-kappa B(NF-κB) is an important regulator of intestinal inflammation.

View Article and Find Full Text PDF

Lead Pb(II) ions is a cumulative toxicant that impacts several biological systems and poses severe harm to young children. Accurate Pb(II) ions monitoring is thus of paramount importance. Here, we present the synthesis and application of glutathione-capped Au nanoclusters (Au(SG)) as a luminescence probe for the accurate and selective monitoring of blood Pb(II).

View Article and Find Full Text PDF

The large input of mulch film and organic fertilizer have led to increasingly serious microplastic pollution in farmland soil of China. In this study, the microplastic pollution of peanut farmland in Dezhou City, Shandong Province was investigated. The effects of different mulching years (0, 3, 5, and 8 years) and organic fertilizer application on the abundance, particle size, color, and shape of microplastics in farmland soil were analyzed.

View Article and Find Full Text PDF