Background: CC-115, a dual mTORC1/2 and DNA-PK inhibitor, has promising antitumour activity when combined with androgen receptor (AR) inhibition in pre-clinical models.
Methods: Phase 1b multicentre trial evaluating enzalutamide with escalating doses of CC-115 in AR inhibitor-naive mCRPC patients (n = 41). Primary endpoints were safety and RP2D.
Changes in FOXA1 (forkhead box protein A1) protein levels are well associated with prostate cancer (PCa) progression. Unfortunately, direct targeting of FOXA1 in progressive PCa remains challenging due to variations in FOXA1 protein levels, increased FOXA1 mutations at different stages of PCa, and elusive post-translational FOXA1 regulating mechanisms. Here, we show that SKP2 (S-phase kinase-associated protein 2) catalyzes K6- and K29-linked polyubiquitination of FOXA1 for lysosomal-dependent degradation.
View Article and Find Full Text PDFPrevious studies have suggested that PTEN loss is associated with p110β signaling dependency, leading to the clinical development of p110β-selective inhibitors. Here we use a panel pre-clinical models to reveal that PI3K isoform dependency is not governed by loss of PTEN and is impacted by feedback inhibition and concurrent PIK3CA/PIK3CB alterations. Furthermore, while pan-PI3K inhibition in PTEN-deficient tumors is efficacious, upregulation of Insulin Like Growth Factor 1 Receptor (IGF1R) promotes resistance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2021
The increasing complexity of different cell types revealed by single-cell analysis of tissues presents challenges in efficiently elucidating their functions. Here we show, using prostate as a model tissue, that primary organoids and freshly isolated epithelial cells can be CRISPR edited ex vivo using Cas9-sgRNA (guide RNA) ribotnucleoprotein complex technology, then orthotopically transferred in vivo into immunocompetent or immunodeficient mice to generate cancer models with phenotypes resembling those seen in traditional genetically engineered mouse models. Large intrachromosomal (∼2 Mb) or multigenic deletions can be engineered efficiently without the need for selection, including in isolated subpopulations to address cell-of-origin questions.
View Article and Find Full Text PDFMutational activation of the PI3K/AKT pathway is among the most common pro-oncogenic events in human cancers. The clinical utility of PI3K and AKT inhibitors has, however, been modest to date. Here, we used CRISPR-mediated gene editing to study the biological consequences of AKT1 E17K mutation by developing an AKT1 E17K-mutant isogenic system in a -null background.
View Article and Find Full Text PDFAlthough cancer is commonly perceived as a disease of dedifferentiation, the hallmark of early-stage prostate cancer is paradoxically the loss of more plastic basal cells and the abnormal proliferation of more differentiated secretory luminal cells. However, the mechanism of prostate cancer proluminal differentiation is largely unknown. Through integrating analysis of the transcription factors (TFs) from 806 human prostate cancers, we found that ERG was highly correlated with prostate cancer luminal subtyping.
View Article and Find Full Text PDFDespite the development of second-generation antiandrogens, acquired resistance to hormone therapy remains a major challenge in treating advanced prostate cancer. We find that cancer-associated fibroblasts (CAFs) can promote antiandrogen resistance in mouse models and in prostate organoid cultures. We identify neuregulin 1 (NRG1) in CAF supernatant, which promotes resistance in tumor cells through activation of HER3.
View Article and Find Full Text PDFGenomic rearrangements leading to the aberrant expression of ERG are the most common early events in prostate cancer and are significantly enriched for the concomitant loss of PTEN. Genetically engineered mouse models reveal that ERG overexpression alone is not sufficient to induce tumorigenesis, but combined loss of PTEN results in an aggressive invasive phenotype. Here, we show that oncogenic ERG repressed PI3K signaling through direct transcriptional suppression of IRS2, leading to reduced RTK levels and activity.
View Article and Find Full Text PDFOn the basis of our previous work defining the molecular rationale for combined targeting of the PI3K and AR pathways in loss prostate cancer, the first clinical trial was recently reported demonstrating a significant benefit for combination therapy in patients with metastatic prostate cancer. In this phase II trial, loss of PTEN was a biomarker predictive of response to combined AKT and AR inhibition. Given that loss prostate cancers are significantly enriched for genomic rearrangements, we evaluated how the aberrant expression of ERG may impact response to PI3K/AR-targeted therapy.
View Article and Find Full Text PDFProstate-specific membrane antigen (PSMA) or folate hydrolase 1 (FOLH1) is highly expressed on prostate cancer. Its expression correlates inversely with survival and increases with tumor grade. However, the biological role of PSMA has not been explored, and its role in prostate cancer remained elusive.
View Article and Find Full Text PDFA multigenic locus at 3p13-14, spanning FOXP1 to SHQ1, is commonly deleted in prostate cancer and lost broadly in a range of cancers but has unknown significance to oncogenesis or prognosis. Here, we report that FOXP1-SHQ1 deletion cooperates with PTEN loss to accelerate prostate oncogenesis and that loss of component genes correlates with prostate, breast, and head and neck cancer recurrence. We demonstrate that Foxp1-Shq1 deletion accelerates prostate tumorigenesis in mice in combination with Pten loss, consistent with the association of FOXP1-SHQ1 and PTEN loss observed in human cancers.
View Article and Find Full Text PDFLung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non-small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer.
View Article and Find Full Text PDFThe telomere-ending binding protein complex CST (Cdc13-Stn1-Ten1) mediates critical functions in both telomere protection and replication. We devised a co-expression and affinity purification strategy for isolating large quantities of the complete Candida glabrata CST complex. The complex was found to exhibit a 2∶4∶2 or 2∶6∶2 stoichiometry as judged by the ratio of the subunits and the native size of the complex.
View Article and Find Full Text PDFMyotonic dystrophy type 2 (DM2) is caused by CCTG-repeat expansions. Occurrence of splicing and mutations in the muscle chloride channel gene CLCN1 have been reported to contribute to the phenotype. To examine the effect of CLCN1 in DM2 in Germany, we determined the frequency of a representative ClC1 mutation, R894X, and its effect on DM2 clinical features.
View Article and Find Full Text PDFBudding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance, and has been proposed to be a telomere-specific replication protein A (RPA)-like complex. Previous genetic and structural studies revealed a close resemblance between Stn1-Ten1 and RPA32-RPA14. However, the relationship between Cdc13 and RPA70, the largest subunit of RPA, has remained unclear.
View Article and Find Full Text PDFBrh2, the BRCA2 homologue in Ustilago maydis, plays a crucial role in homologous recombination by controlling Rad51. In turn, Brh2 is governed by Dss1, an intrinsically disordered protein that forms a tight complex with the C-terminal region of Brh2. This region of the protein associating with Dss1 is highly conserved in sequence and by comparison with mammalian BRCA2 corresponds to a part of the DNA binding domain with characteristic OB folds.
View Article and Find Full Text PDFInactivation of the structural gene for the RecQ family member, BLM in human, Sgs1 in budding yeast, or Rqh1 in fission yeast leads to inappropriate recombination, chromosome abnormalities, and disturbed replication fork progression. Studies with yeasts have demonstrated that auxiliary gene functions can contribute in overlapping ways with Sgs1 or Rqh1 to circumvent or overcome lesions in DNA caused by certain genotoxic agents. In the combined absence of these functions, recombination-mediated processes lead to severe loss of fitness.
View Article and Find Full Text PDFA single Rad52-related protein is evident by blast analysis of the Ustilago maydis genome database. Mutants created by disruption of the structural gene exhibited few discernible defects in resistance to UV, ionizing radiation, chemical alkylating or cross-linking agents. No deficiency was noted in spontaneous mutator activity, allelic recombination or meiosis.
View Article and Find Full Text PDFThe BRCA2 tumor suppressor functions in repair of DNA by homologous recombination through regulating the action of Rad51. In turn, BRCA2 appears to be regulated by other interacting proteins. Dss1, a small interacting protein that binds to the C-terminal domain, has a profound effect on activity as deduced from studies on the BRCA2-related protein Brh2 in Ustilago maydis.
View Article and Find Full Text PDF