Automatic electrocardiogram (ECG) classification provides valuable auxiliary information for assisting disease diagnosis and has received much attention in research. The success of existing classification models relies on fitting the labeled samples for every ECG type. However, in practice, well-annotated ECG datasets usually cover only limited ECG types.
View Article and Find Full Text PDFAt the dawn of of Artificial General Intelligence (AGI), the emergence of large language models such as ChatGPT show promise in revolutionizing healthcare by improving patient care, expanding medical access, and optimizing clinical processes. However, their integration into healthcare systems requires careful consideration of potential risks, such as inaccurate medical advice, patient privacy violations, the creation of falsified documents or images, overreliance on AGI in medical education, and the perpetuation of biases. It is crucial to implement proper oversight and regulation to address these risks, ensuring the safe and effective incorporation of AGI technologies into healthcare systems.
View Article and Find Full Text PDFThe emergence of artificial general intelligence (AGI) is transforming radiation oncology. As prominent vanguards of AGI, large language models (LLMs) such as GPT-4 and PaLM 2 can process extensive texts and large vision models (LVMs) such as the Segment Anything Model (SAM) can process extensive imaging data to enhance the efficiency and precision of radiation therapy. This paper explores full-spectrum applications of AGI across radiation oncology including initial consultation, simulation, treatment planning, treatment delivery, treatment verification, and patient follow-up.
View Article and Find Full Text PDFExplainable machine learning attracts increasing attention as it improves the transparency of models, which is helpful for machine learning to be trusted in real applications. However, explanation methods have recently been demonstrated to be vulnerable to manipulation, where we can easily change a model's explanation while keeping its prediction constant. To tackle this problem, some efforts have been paid to use more stable explanation methods or to change model configurations.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
June 2022
Over the last decade, deep neural networks (DNNs) are regarded as black-box methods, and their decisions are criticized for the lack of explainability. Existing attempts based on local explanations offer each input a visual saliency map, where the supporting features that contribute to the decision are emphasized with high relevance scores. In this paper, we improve the saliency map based on differentiated explanations, of which the saliency map not only distinguishes the supporting features from backgrounds but also shows the different degrees of importance of the various parts within the supporting features.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
December 2020
Background: Emotions after surviving cancer can be complicated. The survivors may have gained new strength to continue life, but some of them may begin to deal with complicated feelings and emotional stress due to trauma and fear of cancer recurrence. The widespread use of Twitter for socializing has been the alternative medium for data collection compared to traditional studies of mental health, which primarily depend on information taken from medical staff with their consent.
View Article and Find Full Text PDFStud Health Technol Inform
August 2019
The trauma of cancer often leaves survivors with PTSD. Tweets posted on Twitter usually reflect the users' psychological state, which is convenient for data collection. However, Twitter also contains a mix of noisy and genuine tweets.
View Article and Find Full Text PDFSocial network analysis is an important problem in data mining. A fundamental step for analyzing social networks is to encode network data into low-dimensional representations, i.e.
View Article and Find Full Text PDFOnline healthcare forums (OHFs) have become increasingly popular for patients to share their health-related experiences. The healthcare-related texts posted in OHFs could help doctors and patients better understand specific diseases and the situations of other patients. To extract the meaning of a post, a commonly used way is to classify the sentences into several predefined categories of different semantics.
View Article and Find Full Text PDFEURASIP J Bioinform Syst Biol
December 2016
Objectives: Prediabetes is a major epidemic and is associated with adverse cardio-cerebrovascular outcomes. Early identification of patients who will develop rapid progression of atherosclerosis could be beneficial for improved risk stratification. In this paper, we investigate important factors impacting the prediction, using several machine learning methods, of rapid progression of carotid intima-media thickness in impaired glucose tolerance (IGT) participants.
View Article and Find Full Text PDF