Publications by authors named "Ningbin Zhang"

Development and implementation of neuroprosthetic hands is a multidisciplinary field at the interface between humans and artificial robotic systems, which aims at replacing the sensorimotor function of the upper-limb amputees as their own. Although prosthetic hand devices with myoelectric control can be dated back to more than 70 years ago, their applications with anthropomorphic robotic mechanisms and sensory feedback functions are still at a relatively preliminary and laboratory stage. Nevertheless, a recent series of proof-of-concept studies suggest that soft robotics technology may be promising and useful in alleviating the design complexity of the dexterous mechanism and integration difficulty of multifunctional artificial skins, in particular, in the context of personalized applications.

View Article and Find Full Text PDF

Highly stretchable strain sensors based on conducting polymer hydrogel are rapidly emerging as a promising candidate toward diverse wearable skins and sensing devices for soft machines. However, due to the intrinsic limitations of low stretchability and large hysteresis, existing strain sensors cannot fully exploit their potential when used in wearable or robotic systems. Here, a conducting polymer hydrogel strain sensor exhibiting both ultimate strain (300%) and negligible hysteresis (<1.

View Article and Find Full Text PDF

Neuroprosthetic hands are typically heavy (over 400 g) and expensive (more than US$10,000), and lack the compliance and tactile feedback of human hands. Here, we report the design, fabrication and performance of a soft, low-cost and lightweight (292 g) neuroprosthetic hand that provides simultaneous myoelectric control and tactile feedback. The neuroprosthesis has six active degrees of freedom under pneumatic actuation, can be controlled through the input from four electromyography sensors that measure surface signals from residual forearm muscles, and integrates five elastomeric capacitive sensors on the fingertips to measure touch pressure so as to enable tactile feedback by eliciting electrical stimulation on the skin of the residual limb.

View Article and Find Full Text PDF

Nature has been inspiring scientists to fabricate impact protective materials for applications in various aspects. However, it is still challenging to integrate flexible, stiffness-changeable, and protective properties into a single polymer, although these merits are of great interest in many burgeoning areas. Herein, we report an impact-protective supramolecular polymeric material (SPM) with unique impact-hardening and reversible stiffness-switching characteristics by mimicking sea cucumber dermis.

View Article and Find Full Text PDF

Controlling domain width, orientation, and patterns in oxide ferroelectrics are not only important for fundamental research but also for potential electronic application. Here, a series of PbTiO thin films under various cooling rates were deposited on (110)-oriented NdScO substrates by pulsed laser deposition and investigated by using conventional transmission electron microscopy, Cs-corrected scanning TEM and piezoresponse force microscopy. Contrast analysis and electron diffraction revealed that PbTiO films are a/a domain patterns under large tensile strains with different cooling rates.

View Article and Find Full Text PDF

Oxygen vacancy configurations and concentration are coupled with the magnetic, electronic, and transport properties of perovskite oxides, and manipulating the physical properties by tuning the vacancy structures of thin films is crucial for applications in many functional devices. In this study, we report a direct atomic resolution observation of the preferred orientation of vacancy ordering structure in the epitaxial LaCoO (LCO) thin films under various strains from large compressive to large tensile strain utilizing scanning transmission electron microscopy (STEM). Under compressive strains, the oxygen vacancy ordering prefers to be along the planes parallel to the heterointerface.

View Article and Find Full Text PDF

Soft pneumatic network actuators have become one of the most promising actuation devices in soft robotics which benefits from their large bending deformation and low input. However, their monotonous bending motion form in two-dimensional (2-D) space keeps them away from wide applications. This paper presents a detailed fabrication method of soft pneumatic network actuators with oblique chambers, to explore their motions in three-dimensional (3-D) space.

View Article and Find Full Text PDF