Publications by authors named "Ning Shipeng"

Near-infrared (NIR) activated photosensitizers based on heavy-atom-free have great advantages in photoimmunotherapy, yet the tumor microenvironment often restricts their efficacy. To address this, a NIR-activated heavy-atom-free photosensitizer (named Cy-BF) is developed. Cy-BF is then encapsulated with phospholipids and platelet exosome vesicles to create platelet exosomes vesicles biomimetic and Cy-BF loaded hybrid liposomes (named CHL) Characterized by high phototoxicity, low dark toxicity, and enhanced tumor targeting, CHL demonstrates aggregation-induced broadening of absorption spectra and NIR (760 nm laser) activates photothermal therapy and type I photodynamic therapy.

View Article and Find Full Text PDF

The immunosuppressive tumor microenvironment in triple-negative breast cancer could hinder the response to thorough immunotherapy and diminish the antitumor efficacy. Although the STING pathway emerges as a promising target to remedy defects, uncertain drug delivery might lead to off-target inflammatory reactions. Here, we manifest a novel phototheranostic agent with an aggregation-induced emission property that guided the pharmacological activation of a STING agonist for photothermal immunotherapy to create an immunologically "hot" tumor.

View Article and Find Full Text PDF

Single-atom nanozymes are highly effective in the preparation of tumor vaccines (TV) due to their superior peroxidase (POD) activity and excellent biocompatibility. However, the immunosuppressive environment within tumors can diminish the efficacy of these vaccines. Cold exposure (CE) therapy, a noninvasive and straightforward antitumor method, not only suppresses tumor metabolism but also ameliorates the immunosuppressive tumor milieu.

View Article and Find Full Text PDF

Nanozymes with specific catalytic activity inhibit inflammation and promote wound healing efficiently and safely. In this work, multifunctional manganese-based nanozymes (MnGA) with antioxidant properties were successfully constructed via a simple coordination reaction in which manganese chloride was used as the manganese source and gallic acid (GA) was used as the ligand solution. MnGA possesses both catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) activities and a reactive nitrogen species (RNS) scavenging capacity, which enables it to efficiently inhibit the inflammatory response.

View Article and Find Full Text PDF

Inducing immunogenic cell death (ICD) is a promising approach to elicit enduring antitumor immune responses. Hence, extensive efforts are being made to develop ICD inducers. Herein, a cascaded dual-atom nanozyme with Fe and Cu sites (FeCu-DA) as an efficient ICD inducer is presented.

View Article and Find Full Text PDF

Pyroptosis, an inflammatory regulated cell death (RCD) mechanism, is characterized by cellular swelling, membrane rupture, and subsequent discharge of cellular contents, exerting robust proinflammatory effects. Recent studies have significantly advanced our understanding of pyroptosis, revealing that it can be triggered through inflammasome- and caspase-independent pathways, and interacts intricately with other RCD pathways (e.g.

View Article and Find Full Text PDF

To overcome the problems of Gd-based contrast agents (GBCAs) (nephrotoxicity and brain deposition) and stimulator of interferon genes (STING) agonists (poor stability, low delivery efficiency, and potential toxicity), in this study, a Turbo-charging system-like GBCA is designed and constructed for magnetic resonance imaging (MRI) guided STING pathway-activated cancer immunotherapy. Poly(acrylic acid) (PAA) is used to coordinate with Gd, forming a Gd/PAA macrochelate. Both Gd/PAA macrochelate and SR717 are conjugated to cystamine (CA) to obtain SR717-CA@Gd/PAA self-assembled nanoparticles (SAN), which are termed as Turbo S because of its similarity with the Turbo-charging system of cars.

View Article and Find Full Text PDF

Cold exposure (CE) therapy can quickly induce tumor starvation by brown adipose tissue (BAT) thermogenesis. Exploring the combined antitumor mechanism of CE and traditional therapies (such as radiotherapy (RT)) is exciting and promising. In this study, we investigated the effect of CE in combination with nitric oxide (NO) gas therapy on sensitizing tumors to RT and promoting tumor radio-immunotherapy.

View Article and Find Full Text PDF

Cold exposure (CE) therapy is an innovative and cost-efficient cancer treatment that activates brown adipose tissue to compete for glucose uptake, leading to metabolic starvation in tumors. Exploring the combined antitumor mechanisms of CE and traditional therapies (such as nanocatalysis) is exciting and promising. In this study, a platelet membrane biomimetic single-atom nanozyme (SAEs) nanodrug (PFB) carrying bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide (BPTES) is developed for use in cancer CE therapy.

View Article and Find Full Text PDF

Cold exposure therapy (CE), as an inexpensive method, has shown great potential in cancer therapy. Exploring the combined anti-tumor mechanism of CE and traditional therapies (such as photodynamic therapy (PDT)) is exciting and promising. Here, a bionic aggregation-induced emission photosensitizer system (named THL) is designed for combined CE to enhance anti-tumor immunotherapy.

View Article and Find Full Text PDF

The therapeutic landscape for hormone receptor-positive (HR+) breast carcinoma has undergone a significant transformation with the advent of cyclin-dependent kinase (CDK)4/6 inhibitors, particularly in combination with endocrine therapy as the primary regimen. However, the evolution of resistance mechanisms in response to CDK4/6 inhibitors in HR+ metastatic breast cancer presents substantial challenges in managing the disease. This review explores the diverse genomic landscape underlying resistance, including disturbances in the cell cycle, deviations in oncogenic signaling pathways, deficiencies in DNA damage response (DDR) mechanisms, and changes in the tumor microenvironment (TME).

View Article and Find Full Text PDF

Background: In recent years, the widespread use of lipid-lowering drugs, especially statins, has attracted people's attention. Statin use may be potentially associated with a reduced risk of breast cancer.

Objective: To explore the relationship between statin use and cancer risk.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer stem cells (CSCs) in breast cancer contribute to drug resistance, making treatment challenging despite existing drug developments.
  • A new thermoresponsive hydrogel system is created that combines a photothermal agent and thioridazine (THZ), allowing for controlled drug delivery triggered by light, enhancing chemotherapy effectiveness.
  • This system shows promising results in preclinical studies by improving drug accumulation in tumors and significantly reducing CSCs, thus minimizing tumor recurrence and spread in mice.
View Article and Find Full Text PDF

Photothermal therapy (PTT) holds considerable clinical promise. However, insufficient PTT-induced tumor recurrence and metastasis is an urgent practical problem that needs to be solved. Herein, a biomimetic mesoporous organosilicon nano-system called PSAB is designed to precisely deplete cancer stem cells (CSCs) and prevent tumor recurrence and metastasis after PTT.

View Article and Find Full Text PDF

The Enhanced Permeability and Retention (EPR) effect, an elevated accumulation of drugs and nanoparticles in tumors versus in normal tissues, is a widely used concept in the field of cancer therapy. It assumes that the vasculature of solid tumors would possess abnormal, leaky endothelial cell barriers, allowing easy access of intravenous-delivered drugs and nanoparticles to tumor regions. However, the EPR effect is not always effective owing to the heterogeneity of tumor endothelium over time, location, and species.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a chronic interstitial lung disorder characterized by abnormal myofibroblast activation, accumulation of extracellular matrix (ECM), and thickening of fibrotic alveolar walls, resulting in deteriorated lung function. PF is initiated by dysregulated wound healing processes triggered by factors such as excessive inflammation, oxidative stress, and coronavirus disease (COVID-19). Despite advancements in understanding the disease's pathogenesis, effective preventive and therapeutic interventions are currently lacking.

View Article and Find Full Text PDF

Cuproptosis, a newly discovered mechanism of inducing tumor cell death, primarily relies on the intracellular accumulation of copper ions. The utilization of Cu-based nanomaterials to induce cuproptosis holds promising prospects in future biomedical applications. However, the presence of high levels of glutathione (GSH) within tumor cells hinders the efficacy of cuproptosis.

View Article and Find Full Text PDF

Ultrahigh dose-rate (FLASH) radiotherapy is an emerging technology with excellent therapeutic effects and low biological toxicity. However, tumor recurrence largely impede the effectiveness of FLASH therapy. Overcoming tumor recurrence is crucial for practical FLASH applications.

View Article and Find Full Text PDF

Introduction: The presence of cancer stem cells (CSCs) significantly limits the therapeutic efficacy of radiotherapy (RT). Efficient elimination of potential CSCs is crucial for enhancing the effectiveness of RT.

Methods: In this study, we developed a biomimetic hybrid nano-system (PMC) composed of MnCO as the inner core and platelet membrane (PM) as the outer shell.

View Article and Find Full Text PDF

Compared to conventional radiotherapy (RT), FLASH-RT delivers ultra-high dose radiation, significantly reducing damage to normal tissue while guaranteeing the effect of cancer treatment. However, cancer recurrence and metastasis frequently occur after all RT due to the existence of intractable cancer stem cells (CSCs). To address this, a biomimetic nanoplatform (named TAFL) of tumor-derived exosome fusion liposomes is designed by co-loading aggregation-induced emission photothermal agents, TPE-BBT, and anti-cancer drugs, aspirin, aiming to clear CSCs for inhibiting cancer recurrence and metastasis after FLASH-RT therapy .

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most common malignant tumours in women, and its prognosis is poor. The prognosis of BC patients can be improved by immunotherapy. However, due to the heterogeneity of BC, the identification of new biomarkers is urgently needed to improve the prognosis of BC patients.

View Article and Find Full Text PDF

Background: This study aimed to investigate the value of preoperative indocyanine green (ICG) lymphography combined with ultrasonography for low-pressure vein localization in secondary lymphedema surgery for breast cancer.

Methods: A total of 29 patients who were admitted to the breast surgery department of our hospital from July 2019 to May 2021 were included in this study. All patients received preoperative reverse lymphography and ultrasonography for low-pressure vein in lymphedema surgery.

View Article and Find Full Text PDF

Despite advances in cancer therapy, the existence of self-renewing cancer stem cells (CSC) can lead to tumor recurrence and radiation resistance, resulting in treatment failure and high mortality in patients. To address this issue, a near-infrared (NIR) laser-induced synergistic therapeutic platform has been developed by incorporating aggregation-induced emission (AIE)-active phototheranostic agents and sulfur dioxide (SO ) prodrug into a biocompatible hydrogel, namely TBH, to suppress malignant CSC growth. Outstanding hydroxyl radical (·OH) generation and photothermal effect of the AIE phototheranostic agent actualizes Type I photodynamic therapy (PDT) and photothermal therapy through 660 nm NIR laser irradiation.

View Article and Find Full Text PDF

Introduction: Sonodynamic therapy (SDT) as an emerging tumor treatment gained wide attention. However, tumor vascular destruction and oxygen depletion in SDT process may lead to further hypoxia. This may lead to enhanced glycolysis, lactate accumulation, and immunosuppression.

View Article and Find Full Text PDF

Lung cancer the most prevalent cause of cancer-related deaths, and current therapies lack sufficient specificity and efficacy. This study developed an injectable thermosensitive hydrogel harboring hollow copper sulfide nanoparticles and β-lapachone (Lap) (CLH) for lung tumor treatment. The hydrogel-encapsulated CLH system can remotely control the release of copper ions (Cu) and drugs using photothermal effects for non-invasive controlled-release drug delivery in tumor therapy.

View Article and Find Full Text PDF