Publications by authors named "Ning Sheng Cai"

Article Synopsis
  • The dopamine D receptor (DR) plays a significant role in controlling the functioning of frontal cortico-striatal neurons through heteromers with the α adrenoceptor (αR), which are found in specific brain regions.
  • Research utilizing advanced techniques revealed a new, functionally important αR-DR heteromer located in cortico-striatal terminals, demonstrating distinct signaling behaviors compared to DR variants.
  • These functional differences suggest that certain DR variants may enhance αR-mediated noradrenergic control, potentially influencing susceptibility to impulse control issues and posttraumatic stress disorder.
View Article and Find Full Text PDF
Article Synopsis
  • The dopamine D receptor (DR) is the least understood dopamine receptor subtype, particularly regarding common genetic variations that affect its function.
  • These variations, specifically those with 4 or 7 proline repeats, have been linked to neuropsychiatric disorders like ADHD and substance use disorders, highlighting individual differences in impulse control.
  • Recent research suggests that DR's role in modulating the brain's dopamine and norepinephrine systems could make it a potential therapeutic target for ADHD and other impulse-control-related conditions.
View Article and Find Full Text PDF
Article Synopsis
  • The study explores how dopamine D1 and D2 receptor (DR-DR) heteromers can influence the effects of selective dopamine ligands, suggesting their relevance as drug development targets.
  • Researchers demonstrated that three similar dopamine ligands (PG01042, PG01037, and VK4-116) have distinct effects based on DR-DR heteromerization, showing varying roles in signaling.
  • The findings indicate that GPCR heteromers should be considered key targets for drug development, especially for conditions like L-DOPA-induced dyskinesia in Parkinson's disease, rather than focusing solely on individual GPCR components.
View Article and Find Full Text PDF
Article Synopsis
  • Recent studies suggest that µ-opioid receptors (MORs) and galanin receptors (GalRs) in the brain work together to enhance the effects of opioids on dopamine.
  • The research reveals that when these receptors are expressed alone, they primarily form homodimers, but when co-expressed, they preferentially create heterotetramers.
  • The formation of these heteromers leads to a significant change in the way the receptors interact with G-proteins, shifting from an inhibitory to a stimulatory response, highlighting the complexity and importance of receptor interactions in signaling pathways.
View Article and Find Full Text PDF
Article Synopsis
  • Polymorphic alleles of the DRD4 gene are linked to differences in personality and neuropsychiatric disorders, particularly ADHD.
  • The study investigates the relationship between the α adrenoceptor (αR) and dopamine D receptor (DR), finding that they can form functional heteromers in brain cells.
  • Results indicate that these αR-DR heteromers influence signaling pathways in the brain, suggesting they could be important targets for ADHD treatments.
View Article and Find Full Text PDF

Background: It has been hypothesized that heteromers of adenosine A receptors (A2AR) and cannabinoid CB receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics.

View Article and Find Full Text PDF

Several studies found in vitro evidence for heteromerization of dopamine D receptors (D1R) and D receptors (D3R), and it has been postulated that functional D1R-D3R heteromers that are normally present in the ventral striatum mediate synergistic locomotor-activating effects of D1R and D3R agonists in rodents. Based also on results obtained in vitro, with mammalian transfected cells, it has been hypothesized that those behavioral effects depend on a D1R-D3R heteromer-mediated G protein-independent signaling. Here, we demonstrate the presence on D1R-D3R heteromers in the mouse ventral striatum by using a synthetic peptide that selectively destabilizes D1R-D3R heteromers.

View Article and Find Full Text PDF

Identifying non-addictive opioid medications is a high priority in medical sciences, but μ-opioid receptors mediate both the analgesic and addictive effects of opioids. We found a significant pharmacodynamic difference between morphine and methadone that is determined entirely by heteromerization of μ-opioid receptors with galanin Gal1 receptors, rendering a profound decrease in the potency of methadone. This was explained by methadone's weaker proficiency to activate the dopaminergic system as compared to morphine and predicted a dissociation of therapeutic versus euphoric effects of methadone, which was corroborated by a significantly lower incidence of self-report of "high" in methadone-maintained patients.

View Article and Find Full Text PDF

The two most common polymorphisms of the human DRD4 gene encode a dopamine D receptor (D4R) with four or seven repeats of a proline-rich sequence of 16 amino acids (D4.4R or D4.7R).

View Article and Find Full Text PDF

Protein complementation assays (PCA) are used as pharmacological tools, enabling a wide array of applications, ranging from studies of protein-protein interactions to second messenger effects. Methods to detect activities of G protein-coupled receptors (GPCRs) have particular relevance for drug screening. Recent development of an engineered luciferase NanoLuc created the possibility of generating a novel PCA, which in turn could open a new avenue for developing drug screening assays.

View Article and Find Full Text PDF

The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating "Go" responses upon exposure to reward-related stimuli and "NoGo" responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of the most studied transmembrane cell signaling pathways. However, it is unknown whether the ligand-dependent interactions between these signaling molecules are based on random collisions or the rearrangement of pre-coupled elements in a macromolecular complex. Furthermore, it remains controversial whether a GPCR homodimer coupled to a single heterotrimeric G protein constitutes a common functional unit.

View Article and Find Full Text PDF

The poor norepinephrine innervation and high density of Gi/o-coupled α- and α-adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D-like receptor ligands, such as the D receptor agonist 7-OH-PIPAT and the D receptor agonist RO-105824, to α-adrenoceptors in cortical and striatal tissue, which express α-adrenoceptors and both α- and α-adrenoceptors, respectively.

View Article and Find Full Text PDF

The two highly homologous subtypes of stimulatory G proteins Gαs (Gs) and Gαolf (Golf) display contrasting expression patterns in the brain. Golf is predominant in the striatum, while Gs is predominant in the cortex. Yet, little is known about their functional distinctions.

View Article and Find Full Text PDF

Gα (G) and Gα (G) are highly homologous G-protein α subunits that activate adenylate cyclase, thereby serving as crucial mediators of intracellular signaling. Because of their dramatically different brain expression patterns, we studied similarities and differences between their activation processes with the aim of comparing their receptor coupling mechanisms. We engineered novel luciferase- and Venus-fused Gα constructs that can be used in bioluminescence resonance energy transfer assays.

View Article and Find Full Text PDF

The development of bivalent ligands has attracted interest as a way to potentially improve the selectivity and/or affinity for a specific receptor subtype. The ability to bind two distinct receptor binding sites simultaneously can allow the selective activation of specific G-protein dependent or β-arrestin-mediated cascade pathways. Herein, we developed an extended SAR study using sumanirole (1) as the primary pharmacophore.

View Article and Find Full Text PDF

Polymorphic variants of the dopamine D receptor gene () have been repeatedly associated with numerous neuropsychiatric disorders. Yet, the functional role of the D receptor and the functional differences of the products of polymorphic variants remained enigmatic. Immunohistochemical and optogenetic-microdialysis experiments were performed in knock-in mice expressing a D receptor with the long intracellular domain of a human polymorphic variant associated with attention deficit hyperactivity disorder (ADHD).

View Article and Find Full Text PDF

Unlabelled: The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive.

View Article and Find Full Text PDF

The Gαi/o-coupled dopamine D2-like receptor family comprises three subtypes: the D2 receptor (D2R), with short and long isoform variants (D2SR and D2LR), D3 receptor (D3R), and D4 receptor (D4R), with several polymorphic variants. The common overlap of norepinephrine innervation and D2-like receptor expression patterns prompts the question of a possible noncanonical action by norepinephrine. In fact, previous studies have suggested that norepinephrine can functionally interact with D4R.

View Article and Find Full Text PDF

Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release.

View Article and Find Full Text PDF

The dopamine D1 receptor-D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa-induced dyskinesia and in drug addiction.

View Article and Find Full Text PDF

Previous studies have shown that dopamine and galanin modulate cholinergic transmission in the hippocampus, but little is known about the mechanisms involved and their possible interactions. By using resonance energy transfer techniques in transfected mammalian cells, we demonstrated the existence of heteromers between the dopamine D(1)-like receptors (D(1) and D(5)) and galanin Gal(1), but not Gal(2) receptors. Within the D(1)-Gal(1) and D(5)-Gal(1) receptor heteromers, dopamine receptor activation potentiated and dopamine receptor blockade counteracted MAPK activation induced by stimulation of Gal(1) receptors, whereas Gal(1) receptor activation or blockade did not modify D(1)-like receptor-mediated MAPK activation.

View Article and Find Full Text PDF

Dopamine (DA), the most abundant catecholamine in the basal ganglia, participates in the regulation of motor functions and of cognitive processes such as learning and memory. Abnormalities in dopaminergic systems are thought to be the bases for some neuropsychiatric disorders including addiction, Parkinson's disease, and Schizophrenia. DA exerts its arrays of functions via stimulation of D1-like (D1 and D5) and D2-like (D2, D3, and D4) DA receptors which are located in various regions of the brain.

View Article and Find Full Text PDF

Methamphetamine (METH) is an illicit drug which is neurotoxic to the mammalian brain. Numerous studies have revealed significant decreases in dopamine and serotonin levels in the brains of animals exposed to moderate-to-large METH doses given within short intervals of time. In contrast, repeated injections of small nontoxic doses of the drug followed by a challenge with toxic METH doses afford significant protection against monoamine depletion.

View Article and Find Full Text PDF

Pretreatment with methamphetamine (METH) can attenuate toxicity due to acute METH challenges. The majority of previous reports have focused mainly on the effects of the drug on the striatal dopaminergic system. In the present study, we used a regimen that involves gradual increases in METH administration to rats in order to mimic progressively larger doses of the drug used by some human METH addicts.

View Article and Find Full Text PDF