Alcoholic fatty liver (AFL) is one of the most common chronic liver diseases globally with complex and controversial pathogenesis. Recent evidence suggests that iron overload and lipid peroxidation are risk factors for AFL. Caveolin-1 (CAV1) is an important signal platform that can maintain lipid homeostasis during the development of non-alcoholic fatty liver.
View Article and Find Full Text PDFThe Chinese poultry industry has witnessed rapid development, with laying hens playing a pivotal role. However, the escalating demand has led to an exponential increase in the population of laying hens raised, resulting in emerging challenges. Particularly during bacterial infections, substantial losses can be incurred.
View Article and Find Full Text PDFInfected diabetic wounds represent a significant challenge in clinical care due to persistent inflammation and impaired healing. To address these issues, the development of novel wound dressings with both antibacterial and reactive oxygen species (ROS) scavenging properties is essential. Herein, we prepare a novel wound dressing composed of CuO nanoparticles decorated on TiC MXene (CuO@TiC) and integrate it into a poly(vinyl alcohol) (PVA) matrix to form electrospun nanofibers (CuO@TiC@PVA).
View Article and Find Full Text PDFNeuroimaging has entered the era of big data. However, the advancement of preprocessing pipelines falls behind the rapid expansion of data volume, causing substantial computational challenges. Here we present DeepPrep, a pipeline empowered by deep learning and a workflow manager.
View Article and Find Full Text PDFDue to the porous and interconnected structure, cryogels significantly facilitate blood exudate absorption and support rapid hemostasis as novel wound dressings. However, cryogels suffer from insufficient inherent antibacterial properties, which seriously limits their clinical applications. Herein, we developed a chitosan (CHI) and sodium alginate (SA) composite-based antibacterial photodynamic therapy (aPDT) cryogel for rapid hemostasis and infected wound healing.
View Article and Find Full Text PDFFecal microbiota transplantation (FMT) is advantageous for treating intractable diseases via the microbiota-gut-organ axis. However, invasive administration of gut microbiota via nasal feeding tubes limits the widespread application of FMT. Here, we attempted to develop a novel strategy to deliver gut microbiota using nanocapsules.
View Article and Find Full Text PDFObjectives: Understanding the epidemiology of treatment for patients with co-occurring depression and obesity can inform care quality. The objective of the study was to identify how patients with obesity and newly diagnosed depression are treated and whether treatment is associated with body mass index change.
Methods: This cohort study included adults with obesity and newly diagnosed depression who had ≥2 primary care visits between 2015 and 2020 at a large integrated health system.
Breast cancer utilizes diverse immunosuppressive mechanisms to evade immune surveillance, thereby impairing immunotherapeutic effects. In this work, a chimeric peptide functionalized immunostimulant (designated as aGlyR) is fabricated to boost photodynamic immunotherapy through PD-L1 deglycosylation and CD47 inhibition. The photosensitizer protoporphyrin IX (PpIX) is conjugated to a PD-L1 deglycosylation peptide via a hydrophilic PEG linker, yielding the chimeric peptide Fmoc-K(PpIX)-PEG-GFTATPPAPDSPQEP.
View Article and Find Full Text PDFHere a bioengineered platform is introduced to investigate adverse effects of environmental materials on the human cornea. Using primary cells, this system is capable of reproducing the differentiated corneal epithelium and its underlying stroma in the human eye, which can then be treated with externally applied solid, liquid, or gaseous substances in a controlled manner and under physiologically relevant conditions. The proof-of-principle of how this system can be used to simulate human ocular exposure to different classes of environmental toxicants for direct visualization and quantitative analysis of their potential to induce acute corneal injury and inflammation is demonstrated.
View Article and Find Full Text PDFBrown cotton and white cotton are two important raw materials used in the cotton fiber industry. Clarifying the differences in morphology, agronomic traits, and fiber pigments between these varieties can facilitate the implementation of corresponding cultivation and breeding techniques. Therefore, we obtained F generation brown cotton plants through hybridization and compared them with their parents.
View Article and Find Full Text PDFMetabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, which has the potential to advance to fibrosis. CAV1 has the effects of improving liver lipid deposition in MASLD, however, the potential mechanism is largely unknown. Here, we establish a MASLD mouse model in CAV1 knockout (KO) mice and perform transcriptome analysis on livers from mice to investigate the effects of CAV1 in MASLD progression.
View Article and Find Full Text PDFTumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.
View Article and Find Full Text PDFThe plasma membrane (PM)-localized Na+/H+ antiporter Salt Overly Sensitive1 (SOS1) is essential for plant salt tolerance through facilitating Na+ efflux; however, how SOS1 localization and protein accumulation is regulated in plants remains elusive. Here, we report that Sorting Nexin 1 (SNX1) is required for plant salt-stress tolerance through affecting endosomal trafficking of SOS1 in Arabidopsis (Arabidopsis thaliana). Disruption of SNX1 caused salt hypersensitivity with increased Na+ accumulation and decreased Na+ efflux in Arabidopsis when challenged with high salinity stress.
View Article and Find Full Text PDFAs an emerging therapeutic method, the application of sonodynamic therapy (SDT) is hindered by its intrinsic unsatisfactory efficiency, the tumor hypoxia and low tumor specificity. Here, we reported the design of a tumor-targeting multifunctional nanodrug for O-generation/O-economization dually enhanced SDT/chemodynamic therapy (CDT) combination therapy. After the co-encapsulation of sonosensitizer indocyanine green (ICG) and oxidative phosphorylation inhibitor metformin (Met) into hollow MnO (H-MnO) nanoparticles, ICG/Met@H-MnO@MPN-FA (IMMMF) was conveniently prepared through the formation of metal-phenolic networks (MPNs) between Fe and folic acid (FA) immobilized tannic acid (TA, TA-FA) onto its surface.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
is a recurring pest in the maize seedling stage under the wheat-maize no-tillage direct seeding system in China's summer maize region. Our previous research identified a highly pathogenic to , which spore wall protein plays an important role in the infection process. However, the regulatory mechanism of this spore wall protein is still unclear.
View Article and Find Full Text PDFIn addition to tumor cells, M2-like tumor-associated macrophages (TAMs) also promote tumor progression. Accordingly, the strategy of targeted depletion or repolarization of M2-like TAMs becomes attractive. Here, we report a dual-targeting nanoagent SAMMH to tumor cells and M2-like TAMs for combinatorial tumor treatment.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease globally, with a complex and contentious pathogenesis. Caveolin-1 (CAV1) is an important regulator of liver function and can mitigate liver injury by scavenging reactive oxygen species (ROS). Evidence suggests that NOX4 is a source of ROS production, that oxidative stress and ferroptosis are closely related, and that both are involved in the onset and progression of NAFLD.
View Article and Find Full Text PDFEmerging research attentions are focused on the development of fluorescent biomaterials for various biomedical applications, including fluorescence-guided surgery. However, it is still challenging to prepare biomolecules-based fluorescent fibers with both satisfactory biocompatibility and optimal mechanical properties. Here, we develop a fluorescent robust biofiber through using a tetraphenylethene-containing surfactant as the contact points between polysaccharide chains of alginate.
View Article and Find Full Text PDFJ Clin Hypertens (Greenwich)
December 2024
In structures with special geometry lattices, variations in stacking sequences are ubiquitous, yielding many novel structures and functionalities. Despite a wealth of intriguing properties and wide-ranging applications, there remains a considerable gap in understanding the correlation between special geometry lattices and functionalities in borides. Here, we design and synthesize a new superconducting boride NbIrB, with a body-centered orthorhombic structure, consisting of alternating two-dimensional [Nb-Ir-Nb] triple-triangular-lattice-layers and B fragment layers.
View Article and Find Full Text PDFExploring methods to achieve high thermal stability in phosphors is of great significance for their applications in high-temperature fields. Currently, energy transfer (ET) from the host to activator lanthanide ions (Ln) is an effective approach to improving the antithermal quenching of phosphors. In this contribution, LaNbO (LNO) with efficient blue emission is used as the host to construct the host-Ln dual-emitting LNO/Ln (Eu/Sm/Pr) phosphor system, and the ET efficiency under thermal activation is investigated.
View Article and Find Full Text PDFFerroelectric 2D van der Waals (vdW) layered materials are attracting increasing attention due to their potential applications in next-generation nanoelectronics and in-memory computing with polarization-dependent functionalities. Despite the critical role of polarization in governing ferroelectricity behaviors, its origin and relation with local structures in 2D vdW layered materials have not been fully elucidated so far. Here, intralayer sliding of approximately six degrees within each quadruple-layer of the prototype 2D vdW ferroelectrics InSe is directly observed and manipulated using sub-angstrom resolution imaging and in situ biasing in an aberration-corrected scanning transmission electron microscope.
View Article and Find Full Text PDF