Group B coxsackieviruses (CVBs) cause a wide range of diseases in humans, but no vaccines are currently available to prevent these infections. Previously, we had demonstrated that a live attenuated CVB3 vaccine virus, Mutant 10 (Mt10), offers protection against multiple CVB serotypes as evaluated in various inbred mouse strains; however, the applicability of these findings to the outbred human population remains uncertain. To address this issue, we used Diversity Outbred (DO) mice, whose genome is derived from eight inbred mouse strains that may capture the level of genetic diversity of the outbred human population.
View Article and Find Full Text PDFMessenger RNA (mRNA) vaccines were highly effective against the ancestral SARS-CoV-2 strain, but the efficacy of bivalent mRNA boosters against XBB variants was substantially lower. Here, we show limited durability of neutralizing antibody (NAb) responses against XBB variants and isotype switching to immunoglobulin G4 (IgG4) responses following bivalent mRNA boosting. Bivalent mRNA boosting elicited modest XBB.
View Article and Find Full Text PDFThe Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variant BA.2.86 has over 30 mutations in spike compared with BA.
View Article and Find Full Text PDFCells
September 2023
Myocarditis is a predominant cause of congestive heart failure and sudden death in children and young adolescents that can lead to dilated cardiomyopathy. Lymphocytic myocarditis mediated by T cells can result from the recognition of cardiac antigens that may involve CD4 or CD8 T cells or both. In this report, we describe the generation of T cell receptor (TCR) transgenic mice on a C57BL/6 genetic background specific to cardiac myosin heavy chain (Myhc)-α 334-352 and make the following observations: First, we verified that Myhc-α 334-352 was immunogenic in wild-type C57BL/6 mice and induced antigen-specific CD4 T cell responses despite being a poor binder of IA; however, the immunized animals developed only mild myocarditis.
View Article and Find Full Text PDFThree and a half years into the coronavirus disease 2019 (COVID-19) pandemic, the nature and durability of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still remains unclear. Current COVID-19 mRNA vaccines have been shown to provide minimal protection against infection with XBB variants but substantial protection against severe disease. However, such protection appears to wane quickly.
View Article and Find Full Text PDFThe group B coxsackieviruses (CVBs) exist in six serotypes (CVB1 to CVB6). Disease associations have been reported for most serotypes, and multiple serotypes can cause similar diseases. For example, CVB1, CVB3, and CVB5 are generally implicated in the causation of myocarditis, whereas CVB1 and CVB4 could accelerate the development of type 1 diabetes (T1D).
View Article and Find Full Text PDFEnteroviruses, which include Coxsackieviruses, are a common cause of virus infections in humans, and multiple serotypes of the group B Coxsackievirus (CVB) can induce similar diseases. No vaccines are currently available to prevent CVB infections because developing serotype-specific vaccines is not practical. Thus, developing a vaccine that induces protective immune responses for multiple serotypes is desired.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) are an effective therapy for various cancers; however, they can induce immune-related adverse events (irAEs) as a side effect. Myocarditis is an uncommon, but fatal, irAE caused after ICI treatments. Currently, the mechanism of ICI-associated myocarditis is unclear.
View Article and Find Full Text PDFEnteroviruses such as group B coxsackieviruses (CVB) are commonly suspected as causes of myocarditis that can lead to dilated cardiomyopathy (DCM), and the mouse model of CVB3 myocarditis is routinely used to understand DCM pathogenesis. Mechanistically, autoimmunity is suspected due to the presence of autoantibodies for select antigens. However, their role continues to be enigmatic, which also raises the question of whether the breadth of autoantibodies is sufficiently characterized.
View Article and Find Full Text PDFCoxsackievirus B3 (CVB3)-induced myocarditis is commonly employed to study viral pathogenesis in mice. Chronically affected mice may develop dilated cardiomyopathy, which may involve the mediation of immune and nonimmune cells. To dissect this complexity, we performed single-cell RNA sequencing on heart cells from healthy and myocarditic mice, leading us to note significant proportions of myeloid cells, T cells, and fibroblasts.
View Article and Find Full Text PDFGroup B coxsackieviruses (CVB) containing six serotypes, B1-B6, affect various organs, and multiple serotypes can induce similar diseases such as myocarditis and pancreatitis. Yet, no vaccines are currently available to prevent these infections. Translationally, the derivation of vaccines that offer protection against multiple serotypes is highly desired.
View Article and Find Full Text PDFThe discovery of IL-10 more than 30 years ago marked the beginning of our understanding of how cytokines regulate immune responses, based on cross-regulation between Th1 and Th2 cytokines. Although multiple cell types were shown to produce IL-10, its identity as a Th2 cytokine remained strong because it was rigidly associated with Th2 clones in mice, whereas both Th1 and Th2 clones could secrete IL-10 in humans. However, as new Th1/Th2 cell functionalities emerged, anti-inflammatory action of IL-10 gained more attention than its inhibitory effect on Th1 cells, which may occur as an indirect consequence of suppression of APCs.
View Article and Find Full Text PDFCoxsackievirus B3 (CVB3), is commonly implicated in myocarditis, which can lead to dilated cardiomyopathy, in addition to causing acute pancreatitis and meningitis. Yet, no vaccines are currently available to prevent this infection. Here, we describe the derivation of a live attenuated vaccine virus, termed mutant (Mt) 10, encoding a single amino acid substitution H790A within the viral protein 1, that prevents CVB3 infection in mice and protects from both myocarditis and pancreatitis in challenge studies.
View Article and Find Full Text PDFSex-related differences in the occurrence of autoimmune diseases is well documented, with females showing a greater propensity to develop these diseases than their male counterparts. Sex hormones, namely dihydrotestosterone and estrogens, have been shown to ameliorate the severity of inflammatory diseases. Immunologically, the beneficial effects of sex hormones have been ascribed to the suppression of effector lymphocyte responses accompanied by immune deviation from pro-inflammatory to anti-inflammatory cytokine production.
View Article and Find Full Text PDFViral myocarditis has been identified as a major cause of dilated cardiomyopathy (DCM) that can lead to heart failure. Historically, Coxsackieviruses and adenoviruses have been commonly suspected in myocarditis/DCM patients in North America and Europe. However, this notion is changing as other viruses such as Parvovirus B19 and human herpesvirus-6 are increasingly reported as causes of myocarditis in the United States, with the most recent example being the severe acute respiratory syndrome coronavirus 2, causing the Coronavirus Disease-19.
View Article and Find Full Text PDFGroup B coxsackieviruses (CVBs) belonging to the genus, and contain six serotypes that induce various diseases, whose occurrence may involve the mediation of more than one serotype. We recently identified immunogenic epitopes within coxsackieviruses B3 (CVB3) viral protein 1 that induce anti-viral T cell responses in mouse models of CVB infections. In our investigations to determine the protective responses of the viral epitopes, we unexpectedly noted that animals immunized with complete Freund's adjuvant (CFA) alone and later challenged with CVB3 were completely protected against myocarditis.
View Article and Find Full Text PDFMol Immunol
August 2020
Autoreactive T cells may contribute to post-viral myocarditis induced with Coxsackievirus B3 (CVB3), but the underlying mechanisms of their generation are unclear. Here, we have comprehensively analyzed the generation of antigen-specific, autoreactive T cells in the mouse model of CVB3 infection for antigens implicated in patients with myocarditis/dilated cardiomyopathy. First, comparative analysis of CVB3 proteome with five autoantigens led us to identify three mimicry epitopes, one each from adenine nucleotide translocator 1 (ANT), sarcoplasmic/endoplasmic reticulum Ca ATPase 2a (SERCA2a) and cardiac troponin I.
View Article and Find Full Text PDFInflammatory heart disease (IHD) is a group of diseases that includes pericarditis, myocarditis, and endocarditis. Although males appear to be more commonly affected than females, IHD can be seen in any age group. While the disease can be self-limiting leading to full recovery, affected individuals can develop chronic disease, suggesting that identification of primary triggers is critical for successful therapies.
View Article and Find Full Text PDFCoxsackievirus group B (CVB) contains six serotypes that can affect various organs. Some of these organ-specific diseases such as myocarditis and pancreatitis can be caused by more than one serotype. Thus, development of immunological tools common to multiple serotypes is desired.
View Article and Find Full Text PDFImmunobiology
March 2020
We recently reported identification of sarcoplasmic/endoplasmic reticulum calcium-ATPase2a (SERCA2a) 971-990, which induces atrial myocarditis by generating autoreactive T cells in A/J mice. However, it was unknown how antigen-sensitized T cells could recognize SERCA2a 971-990, since SERCA2a-expression is confined to an intracellular compartment. In this report, we present evidence that antigen-presenting cells (APCs) from lymphoid and non-lymphoid organs in naïve animals present SERCA2a 971-990 and stimulate antigen-specific T cells.
View Article and Find Full Text PDF