Biol Psychiatry Cogn Neurosci Neuroimaging
November 2024
Background: Anti-NMDA receptor encephalitis (NMDARE) causes long-lasting cognitive deficits associated with altered functional connectivity. Eigenvector centrality (EC) mapping represents a powerful new method for data-driven voxelwise and time-resolved estimation of network importance-beyond changes in classical static functional connectivity.
Methods: To assess changes in functional brain network organization, we applied EC mapping in 73 patients with NMDARE and 73 matched healthy control participants.
Patients with multiple sclerosis consistently show widespread changes in functional connectivity. Yet, alterations are heterogeneous across studies, underscoring the complexity of functional reorganization in multiple sclerosis. Here, we aim to provide new insights by applying a time-resolved graph-analytical framework to identify a clinically relevant pattern of dynamic functional connectivity reconfigurations in multiple sclerosis.
View Article and Find Full Text PDFThe human brain operates in large-scale functional networks. These networks are an expression of temporally correlated activity across brain regions, but how global network properties relate to the neural dynamics of individual regions remains incompletely understood. Here, we show that the brain's network architecture is tightly linked to critical episodes of neural regularity, visible as spontaneous "complexity drops" in functional magnetic resonance imaging signals.
View Article and Find Full Text PDFPatients with anti-N-methyl-aspartate receptor (NMDA) receptor encephalitis suffer from a severe neuropsychiatric syndrome, yet most patients show no abnormalities in routine magnetic resonance imaging. In contrast, advanced neuroimaging studies have consistently identified disrupted functional connectivity in these patients, with recent work suggesting increased volatility of functional state dynamics. Here, we investigate these network dynamics through the spatiotemporal trajectory of meta-state transitions, yielding a time-resolved account of brain state exploration in anti-NMDA receptor encephalitis.
View Article and Find Full Text PDFBackground & Aim: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system associated with deficits in cognitive and motor functioning. While structural brain changes such as demyelination are an early hallmark of the disease, a characteristic profile of functional brain alterations in early MS is lacking. Functional neuroimaging studies at various disease stages have revealed complex and heterogeneous patterns of aberrant functional connectivity (FC) in MS, with previous studies largely being limited to a static account of FC.
View Article and Find Full Text PDFTraditional static functional connectivity analyses have shown distinct functional network alterations in patients with anti--methyl-d-aspartate receptor encephalitis. Here, we use a dynamic functional connectivity approach that increases the temporal resolution of connectivity analyses from minutes to seconds. We hereby explore the spatiotemporal variability of large-scale brain network activity in anti--methyl-d-aspartate receptor encephalitis and assess the discriminatory power of functional brain states in a supervised classification approach.
View Article and Find Full Text PDFBackground: Gray matter (GM) 'pseudoatrophy' is well-documented in patients with anorexia nervosa (AN), but changes in white matter (WM) are less well understood. Here we investigated the dynamics of microstructural WM brain changes in AN patients during short-term weight restoration in a combined longitudinal and cross-sectional study design.
Methods: Diffusion-weighted images were acquired in young AN patients before (acAN-Tp1, n = 56) and after (acAN-Tp2, n = 44) short-term weight restoration as well as in age-matched healthy controls (HC, n = 60).