Microbial electrochemical technologies have been extensively employed for phenol removal. Yet, previous research has yielded inconsistent results, leaving uncertainties regarding the feasibility of phenol degradation under strictly anaerobic conditions using anodes as sole terminal electron acceptors. In this study, we employed high-performance liquid chromatography and gas chromatography-mass spectrometry to investigate the anaerobic phenol degradation pathway.
View Article and Find Full Text PDFTreatment of wastewater contaminated with high sulfate concentrations is an environmental imperative lacking a sustainable and environmental friendly technological solution. Microbial electrochemical technology (MET) represents a promising approach for sulfate reduction. In MET, a cathode is introduced as inexhaustible electron source for promoting sulfate reduction via direct or mediated electron transfer.
View Article and Find Full Text PDFAquifer thermal energy storage (ATES) is a key concept for the use of renewable energy resources. Interest in ATES performed at high temperature (HT-ATES; > 60 °C) is increasing due to higher energetic efficiencies. HT-ATES induces temperature fluctuations that exceed the natural variability in shallow aquifers, which could lead to adverse effects in subsurface ecosystems by altering the groundwater chemistry, biodiversity, and microbial metabolic activity, resulting in changes of the groundwater quality, biogeochemical processes, and ecosystem functions.
View Article and Find Full Text PDFHigh-temperature aquifer thermal energy storage (HT-ATES) is a promising technique to reduce the CO2 footprint of heat supply in the frame of transitioning to renewable energies. However, HT-ATES causes temperature fluctuations in groundwater ecosystems potentially affecting important microbial-mediated ecosystem services. Hence, assessing the impact of increasing temperatures on the structure and functioning of aquifer microbiomes is crucial to evaluate potential environmental risks associated with HT-ATES.
View Article and Find Full Text PDFThe crayfish plague agent Aphanomyces astaci is one of the world's most threatening invasive species. Originally from North America, the pathogen is being imported alongside American crayfish species, which are used for various purposes. In this study, we investigated the marginal, currently known distribution area of the pathogen in Eastern Europe by sampling narrow-clawed crayfish (Astacus leptodactylus) and spiny-cheek crayfish (Orconectes limosus) populations.
View Article and Find Full Text PDFThe oomycete Aphanomyces astaci, the causative agent of crayfish plague, is listed as one of the 100 worst invasive species in the world, destroying the native crayfish populations throughout Eurasia. The aim of this study was to examine the potential of selected mitochondrial (mt) genes to track the diversity of the crayfish plague pathogen A. astaci.
View Article and Find Full Text PDF