Understanding drug glucuronidation in the dog, a preclinical animal, is important but currently poorly characterized at the level of individual enzymes. We have constructed cDNAs for the 10 dog UDP-glucuronosyltransferases of subfamily 1A (dUGT1As), expressed them in insect cells, and assayed their activity as well as the activity of the nine human UGT1As, toward 14 compounds. The goal was to find out whether individual dUGT1As and individual human UGT1As have similar substrate specificities.
View Article and Find Full Text PDFThe glucuronidation of estriol, 16-epiestriol, and 17-epiestriol by the human UDP-glucuronosyltransferases (UGTs) of subfamilies 1A, 2A, and 2B was examined. UGT1A10 is highly active in the conjugation of the 3-OH in all these estriols, whereas UGT2B7 is the most active UGT toward one of the ring D hydroxyls, the 16-OH in estriol and 16-epiestriol, but the 17-OH in 17-epiestriol. Kinetic analyses indicated that the 17-OH configuration plays a major role in the affinity of UGT2B7 for estrogens.
View Article and Find Full Text PDFAs recently demonstrated in patients with factor IX deficiency, adeno-associated virus (AAV)-mediated liver-directed therapy is a viable option for inherited metabolic liver disorders. Our aim is to treat Crigler-Najjar syndrome type I (CN I), an inherited severe unconjugated hyperbilirubinemia, as a rare recessive inherited disorder. Because the number of patients eligible for this approach is small, the efficacy can only be demonstrated by a beneficial effect on the pathophysiology in individual patients.
View Article and Find Full Text PDFSteroids enantiomers are interesting compounds for detailed exploration of drug metabolizing enzymes, such as the UDP-glucuronosyltransferases (UGTs). We have now studied the glucuronidation of the enantiomers of estradiol, androsterone and etiocholanolone by the 19 human UGTs of subfamilies 1A, 2A and 2B. The results reveal that the pattern of human UGTs of subfamily 2B that glucuronidate ent-17β-estradiol, particularly 2B15 and 2B17, resembles the glucuronidation of epiestradiol (17α-estradiol) rather than 17β-estradiol, the main physiological estrogen.
View Article and Find Full Text PDFLittle is currently known about the substrate binding site of the human UDP-glucuronosyltransferases (UGTs) and the structural elements that affect their complex substrate selectivity. In order to further understand and extend our earlier findings with phenylalanines 90 and 93 of UGT1A10, we have replaced each of them with Gly, Ala, Val, Leu, Ile or Tyr, and tested the activity of the resulting 12 mutants toward eight different substrates. Apart from scopoletin glucuronidation, the F90 mutants other than F90L were nearly inactive, while the F93 mutants' activity was strongly substrate dependent.
View Article and Find Full Text PDFObjectives: Characterize the expression and glucuronidation activities of the human uridine 5'-diphospho (UDP)-glucuronosyltransferase (UGT) 2A2.
Method: UGT2A1 was cloned from nasal mucosa mRNA. Synthetic cDNA for UGT2A2 was constructed assuming exon sharing between UGT2A1 and UGT2A2 (Mackenzie et al.
Crigler-Najjar syndrome (CN), caused by deficiency of UGT isoform 1A1 (UGT1A1), is characterized by severe unconjugated hyperbilirubinemia. In this study we have analyzed 19 CN patients diagnosed in The Netherlands (18) and in Belgium (1), and have identified 14 different UGT1A1 mutations, four of which are novel. Two mutations were present in several unrelated patients, suggesting the presence of two founder effects in The Netherlands.
View Article and Find Full Text PDF