Spatial thinking skills are associated with performance, persistence, and achievement in science, technology, engineering, and mathematics (STEM) school subjects. Because STEM knowledge and skills are integral to developing a well-trained workforce within and beyond STEM, spatial skills have become a major focus of cognitive, developmental, and educational research. However, these efforts are greatly hampered by the current lack of access to reliable, valid, and well-normed spatial tests.
View Article and Find Full Text PDFVisual comparisons are pervasive in science, technology, engineering, and mathematics (STEM) instruction and practice. In previous work, adults' visual comparisons of simple stimuli were faster and more accurate when the layout of a display facilitated alignment of corresponding elements-the (Matlen et al., 2020).
View Article and Find Full Text PDFTheory-of-mind (ToM) is an integral part of social cognition, but how it develops remains a critical question. There is evidence that children can gain insight into ToM through experience, including language training and explanatory interactions. But this still leaves open the question of how children gain these insights-what processes drive this learning? We propose that analogical comparison is a key mechanism in the development of ToM.
View Article and Find Full Text PDFRelational reasoning is a hallmark of human higher cognition and creativity, yet it is notoriously difficult to encourage in abstract tasks, even in adults. Generally, young children initially focus more on objects, but with age become more focused on relations. While prerequisite knowledge and cognitive resource maturation partially explains this pattern, here we propose a new facet important for children's relational reasoning development: a general orientation to relational information, or a relational mindset.
View Article and Find Full Text PDFStereotype threat-a situational context in which individuals are concerned about confirming a negative stereotype-is often shown to impact test performance, with one hypothesized mechanism being that cognitive resources are temporarily co-opted by intrusive thoughts and worries, leading individuals to underperform despite high content knowledge and ability (see Schmader & Beilock, ). We test here whether stereotype threat may also impact initial student learning and knowledge formation when experienced prior to instruction. Predominantly African American fifth-grade students provided either their race or the date before a videotaped, conceptually demanding mathematics lesson.
View Article and Find Full Text PDFAnalogical reasoning is the cognitive skill of drawing relationships between representations, often between prior knowledge and new representations, that allows for bootstrapping cognitive and language development. Analogical reasoning proficiency develops substantially during childhood, although the mechanisms underlying this development have been debated, with developing cognitive resources as one proposed mechanism. We explored the role of executive function (EF) in supporting children's analogical reasoning development, with the goal of determining whether predicted aspects of EF were related to analogical development at the level of individual differences.
View Article and Find Full Text PDFAnalogical reasoning, the ability to understand phenomena as systems of structured relationships that can be aligned, compared, and mapped together, plays a fundamental role in the technology rich, increasingly globalized educational climate of the 21st century. Flexible, conceptual thinking is prioritized in this view of education, and schools are emphasizing 'higher order thinking', rather than memorization of a cannon of key topics. The lack of a cognitively grounded definition for higher order thinking, however, has led to a field of research and practice with little coherence across domains or connection to the large body of cognitive science research on thinking.
View Article and Find Full Text PDFThe linguistic relativity hypothesis proposes that speakers of different languages perceive and conceptualize the world differently, but do their brains reflect these differences? In English, most nouns do not provide linguistic clues to their categories, whereas most Mandarin Chinese nouns provide explicit category information, either morphologically (e.g., the morpheme "vehicle" che1 in the noun "train" huo3che1) or orthographically (e.
View Article and Find Full Text PDF