Publications by authors named "Nina Shaban"

The metabolism of zinc and manganese plays a pivotal role in cancer progression by mediating cancer cell growth and metastasis. The SLC30A family proteins and mediate the efflux of zinc, manganese, and probably other transition element ions outside the cytoplasm to the extracellular space or into intracellular membrane compartments. The SLC39A family members and are their functional antagonists that transfer these ions into the cytoplasm.

View Article and Find Full Text PDF

Introduction: The differential ratio of nonsynonymous to synonymous nucleotide substitutions (dN/dS) is a common measure of the rate of structural evolution in proteincoding genes. In addition, we recently suggested that the proportion of transposable elements in gene promoters that host functional genomic sites serves as a marker of the rate of regulatory evolution of genes. Such functional genomic regions may include transcription factor binding sites and modified histone binding loci.

View Article and Find Full Text PDF
Article Synopsis
  • Dual inhibitors like lapatinib are effective for treating HER2-positive breast cancer, but their efficacy can be diminished by human serum and EGF.
  • A study on the SK-BR-3 breast cancer cell line showed that lapatinib treatment changed the expression of 350 proteins, and combining it with serum or EGF reversed much of this change, negating growth inhibition.
  • The research found that lapatinib increased proteins related to mitochondrial function and cellular respiration, marking enhanced respiration as a new mechanism of action for lapatinib in targeting HER2-positive cancer cells.
View Article and Find Full Text PDF

Lapatinib is a targeted therapeutic inhibiting HER2 and EGFR proteins. It is used for the therapy of HER2-positive breast cancer, although not all the patients respond to it. Using human blood serum samples from 14 female donors (separately taken or combined), we found that human blood serum dramatically abolishes the lapatinib-mediated inhibition of growth of the human breast squamous carcinoma SK-BR-3 cell line.

View Article and Find Full Text PDF

Members of the EGFR family of tyrosine kinase receptors are major regulators of cellular proliferation, differentiation, and survival. In humans, abnormal activation of EGFR is associated with the development and progression of many cancer types, which makes it an attractive target for molecular-guided therapy. Two classes of EGFR-targeted cancer therapeutics include monoclonal antibodies (mAbs), which bind to the extracellular domain of EGFR, and tyrosine kinase inhibitors (TKIs), which mostly target the intracellular part of EGFR and inhibit its activity in molecular signaling.

View Article and Find Full Text PDF

Regardless of the presence or absence of specific diagnostic mutations, many cancer patients fail to respond to EGFR-targeted therapeutics, and a personalized approach is needed to identify putative (non)responders. We found previously that human peripheral blood and EGF can modulate the activities of EGFR-specific drugs on inhibiting clonogenity in model EGFR-positive A431 squamous carcinoma cells. Here, we report that human serum can dramatically abolish the cell growth rate inhibition by EGFR-specific drugs cetuximab and erlotinib.

View Article and Find Full Text PDF

Trastuzumab, a HER2-targeted antibody, is widely used for targeted therapy of HER2-positive breast cancer (BC) patients; yet, not all of them respond to this treatment. We investigated here whether trastuzumab activity on the growth of HER2-overexpressing BT474 cells may interfere with human peripheral blood endogenous factors. Among 33 individual BC patient blood samples supplemented to the media, BT474 sensitivity to trastuzumab varied up to 14 times.

View Article and Find Full Text PDF

Many patients fail to respond to EGFR-targeted therapeutics, and personalized diagnostics is needed to identify putative responders. We investigated 1630 colorectal and lung squamous carcinomas and 1357 normal lung and colon samples and observed huge variation in EGFR pathway activation in both cancerous and healthy tissues, irrespectively on gene mutation status. We investigated whether human blood serum can affect squamous carcinoma cell growth and EGFR drug response.

View Article and Find Full Text PDF