Publications by authors named "Nina Seiwert"

Colorectal cancer is one of the most frequent tumor entities, with an increasing incidence and mortality in younger adults in Europe and the United States. Five-year survival rates for advanced colorectal cancer are still low, highlighting the need for novel targets in colorectal cancer therapy. Here, we investigated the therapeutic potential of the compound devimistat (CPI-613) that targets altered mitochondrial cancer cell metabolism and its synergism with the antineoplastic drugs 5-fluorouracil (5-FU) and irinotecan (IT) in colorectal cancer.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a frequently occurring malignant disease with still low survival rates, highlighting the need for novel therapeutics. Merosesquiterpenes are secondary metabolites from marine sponges, which might be useful as antitumor agents. To address this issue, we made use of a compound library comprising 11 isolated merosesquiterpenes.

View Article and Find Full Text PDF

The protein O6-methylguanine-DNA methyltransferase (MGMT) is able to repair the mutagenic O6-methylguanine (O6-MeG) adduct back to guanine. In this context, it may protect against colorectal cancer formation associated with N-nitroso compounds. Such compounds may be endogenously formed by nitrosylation of amino acids, which can give rise to mutagenic O6-MeG and O6-carboxymethylguanine (O6-CMG) adducts.

View Article and Find Full Text PDF

The consumption of red meat is associated with an increased risk for colorectal cancer (CRC). Multiple lines of evidence suggest that heme iron as abundant constituent of red meat is responsible for its carcinogenic potential. However, the underlying mechanisms are not fully understood and particularly the role of intestinal inflammation has not been investigated.

View Article and Find Full Text PDF

The consumption of red meat is probably carcinogenic to humans and is associated with an increased risk to develop colorectal cancer (CRC). Red meat contains high amounts of heme iron, which is thought to play a causal role in tumor formation. In this study, we investigated the genotoxic and cytotoxic effects of heme iron (i.

View Article and Find Full Text PDF

Data from epidemiological studies suggest that consumption of red and processed meat is a factor contributing to colorectal carcinogenesis. Red meat contains high amounts of heme, which in turn can be converted to its nitrosylated form, NO-heme, when adding nitrite-containing curing salt to meat. NO-heme might contribute to colorectal cancer formation by causing gene mutations and could thereby be responsible for the association of (processed) red meat consumption with intestinal cancer.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common cancers and preventive strategies based on natural compounds are highly desirable. Curcumin, the principal bioactive compound in , was described to have multiple beneficial health effects. A drawback, however, is the low bioavailability due to its insolubility in water.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the major tumor entities worldwide, with an increasing incidence in younger people. CRC formation is causally linked to various genetic, life-style and dietary risk factors. Among the ladder, the consumption of red meat has emerged as important risk factor contributing to CRC.

View Article and Find Full Text PDF

Lipoic acid (LA) is a redox-active disulphide compound, which functions as a pivotal co-factor for mitochondrial oxidative decarboxylation. LA and chemical derivatives were shown to target mitochondria in cancer cells with altered energy metabolism, thereby inducing cell death. In this study, the impact of LA on the tumor suppressor protein p53 was analyzed in various colorectal cancer (CRC) cell lines, with a focus on the mechanisms driving p53 degradation.

View Article and Find Full Text PDF

In mammals, epoxy-polyunsaturated fatty acids (epoxy-PUFA) are enzymatically formed from naturally occurring all-cis PUFA by cytochrome P450 monooxygenases leading to the generation of cis-epoxy-PUFA (mixture of R,S- and S,R-enantiomers). In addition, also non-enzymatic chemical peroxidation gives rise to epoxy-PUFA leading to both, cis- and trans-epoxy-PUFA (mixture of R,R- and S,S-enantiomers). Here, we investigated for the first time trans-epoxy-PUFA and the trans/cis-epoxy-PUFA ratio as potential new biomarker of lipid peroxidation.

View Article and Find Full Text PDF

N-nitroso compounds are alkylating agents, which are widespread in our diet and the environment. They induce DNA alkylation adducts such as O-methylguanine (O-MeG), which is repaired by O-methylguanine-DNA methyltransferase (MGMT). Persistent O-MeG lesions have detrimental biological consequences like mutagenicity and cytotoxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Misregulation of oxidative stress, linked to various diseases like inflammatory and neurodegenerative disorders, results in the formation of isoprostanes (IsoP) and isofurans (IsoF) from polyunsaturated fatty acids (PUFA), which can serve as biomarkers and lipid mediators.
  • A new LC-ESI(-)-MS/MS method enables the simultaneous quantification of 27 IsoP and 8 IsoF derived from six different types of PUFA in just 12 minutes, demonstrating high sensitivity and precision in detecting them in biological samples.
  • This comprehensive method has been validated using human plasma and shows distinctive patterns of IsoP and IsoF in response to oxidative stress, contributing valuable insights into targeted metabol
View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common tumor entities, which is causally linked to DNA repair defects and inflammatory bowel disease (IBD). Here, we studied the role of the DNA repair protein poly(ADP-ribose) polymerase-1 (PARP-1) in CRC. Tissue microarray analysis revealed PARP-1 overexpression in human CRC, correlating with disease progression.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are critical DNA lesions, which threaten genome stability and cell survival. DSBs are directly induced by ionizing radiation (IR) and radiomimetic agents, including the cytolethal distending toxin (CDT). This bacterial genotoxin harbors a unique DNase-I-like endonuclease activity.

View Article and Find Full Text PDF

In contrast to long-held assumptions, the gene repertoire of most insects includes hemoglobins. Analyses of the genome of the fruitfly Drosophila melanogaster identified three distinct hemoglobin genes (glob1, glob2, and glob3). While glob1 is predominantly associated with the tracheal system and fat body, glob2 and glob3 are almost exclusively expressed in the testis.

View Article and Find Full Text PDF

PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied.

View Article and Find Full Text PDF

Alkylating agents are present in food and tobacco smoke, but are also used in cancer chemotherapy, inducing the DNA lesion O (6)-methylguanine. This critical adduct is repaired by O (6)-methylguanine-DNA methyltransferase (MGMT), resulting in MGMT inactivation and degradation. In the present study, we analyzed the effects of the natural disulfide compound lipoic acid (LA) on MGMT in vitro and in colorectal cancer cells.

View Article and Find Full Text PDF

Alpha-lipoic acid (LA), which plays a pivotal role in mitochondrial energy metabolism, is an endogenous dithiol compound with an array of antioxidative functions. It has been shown that LA triggers cell death in tumor cell lines, whereas non-transformed cells are hardly affected. In the present study, we analyzed the cytotoxicity of LA on colorectal cancer (CRC) cells differing in their p53 status and investigated a putative synergistic effect with the anticancer drug 5-fluorouracil (5-FU).

View Article and Find Full Text PDF