Publications by authors named "Nina Sara Fraticelli-Guzman"

Glaucoma is a common optic neuropathy characterized by degeneration of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP), that is, ocular hypertension, is the primary modifiable risk factor for glaucoma and the primary characteristic of most preclinical glaucoma models. Extensive genotype and phenotype diversity at relatively low cost and high accessibility makes laboratory mice an excellent preclinical model for glaucoma.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera.

View Article and Find Full Text PDF

Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown.

View Article and Find Full Text PDF

Murine models are commonly used to study glaucoma, the leading cause of irreversible blindness. Glaucoma is associated with elevated intra-ocular pressure (IOP), which is regulated by the tissues of the aqueous outflow pathway. In particular, pectinate ligaments (PLs) connect the iris and trabecular meshwork (TM) at the anterior chamber angle, with an unknown role in maintenance of the biomechanical stability of the aqueous outflow pathway, thus motivating this study.

View Article and Find Full Text PDF

Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera.

View Article and Find Full Text PDF

Murine models are commonly used to study glaucoma, the leading cause of irreversible blindness. Glaucoma is associated with elevated intraocular pressure (IOP), which is regulated by the tissues of the aqueous outflow pathway. In particular, pectinate ligaments (PLs) connect the iris and trabecular meshwork (TM) at the anterior chamber angle, with an unknown role in maintenance of the biomechanical stability of the aqueous outflow pathway, thus motivating this study.

View Article and Find Full Text PDF

Automated methods for rapidly purifying and concentrating bacteria from environmental interferents are needed in next-generation applications for anything from water purification to biological weapons detection. Though previous work has been performed by other researchers in this area, there is still a need to create an automated system that can both purify and concentrate target pathogens in a timely manner with readily available and replaceable components that could be easily integrated with a detection mechanism. Thus, the objective of this work was to design, build, and demonstrate the effectiveness of an automated system, the Automated Dual-filter method for Applied Recovery, or aDARE.

View Article and Find Full Text PDF