Publications by authors named "Nina Reuter"

The human cytomegalovirus (HCMV) glycoprotein B (gB) is the viral fusogen required for entry into cells and for direct cell-to-cell spread of the virus. We have previously demonstrated that the exchange of the carboxy-terminal domain (CTD) of gB for the CTD of the structurally related fusion protein G of the vesicular stomatitis virus (VSV-G) resulted in an intrinsically fusion-active gB variant (gB/VSV-G). In this present study, we employed a dual split protein (DSP)-based cell fusion assay to further characterize the determinants of fusion activity in the CTD of gB.

View Article and Find Full Text PDF

Human cytomegalovirus is a medically important pathogen. Previously, using murine CMV (MCMV), we provided evidence that both neutralizing and nonneutralizing antibodies can confer protection from viral infection in vivo. In this study, we report that serum derived from infected animals had a greater protective capacity in MCMV-infected RAG mice than serum from animals immunized with purified virus.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was responsible for the COVID-19 pandemic, efficiently spreads cell-to-cell through mechanisms facilitated by its membrane glycoprotein spike. We established a dual split protein (DSP) assay based on the complementation of GFP and luciferase to quantify the fusogenic activity of the SARS-CoV-2 spike protein. We provide several lines of evidence that the spike protein of SARS-CoV-2, but not SARS-CoV-1, induced cell-cell fusion even in the absence of its receptor, angiotensin-converting enzyme 2 (ACE2).

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) can cause severe clinical disease in immunocompromised individuals, such as allograft recipients and infants infected in utero. Neutralizing activity of antibodies, measured as the ability to prevent the entry of cell-free virus, has been correlated with the reduction in HCMV transmission and the severity of HCMV-associated disease. However, in vivo HCMV amplification may occur mainly via cell-to-cell spread.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes severe clinical disease in immunosuppressed patients and congenitally infected newborn infants. Viral envelope glycoproteins represent attractive targets for vaccination or passive immunotherapy. To extend the knowledge of mechanisms of virus neutralization, monoclonal antibodies (MAbs) were generated following immunization of mice with HCMV virions.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause severe clinical disease in allograft recipients and infants infected Virus-neutralizing antibodies defined have been proposed to confer protection against HCMV infection, and the virion envelope glycoprotein B (gB) serves as a major target of neutralizing antibodies. The viral fusion protein gB is nonfusogenic on its own and requires glycoproteins H (gH) and L (gL) for membrane fusion, which is in contrast to requirements of related class III fusion proteins, including vesicular stomatitis virus glycoprotein G (VSV-G) or baculovirus gp64. To explore requirements for gB's fusion activity, we generated a set of chimeras composed of gB and VSV-G or gp64, respectively.

View Article and Find Full Text PDF

Wedelolactone (WDL) is a coumestan present in the plants Eclipta prostrata and Wedelia calendulacea which are used for treatment of a multitude of health problems in traditional medicine. It has previously been shown that WDL exerts antiviral activity against human immunodeficiency virus and hepatitis C virus. In this study, we investigated the effect of WDL on lytic human cytomegalovirus (HCMV) infection.

View Article and Find Full Text PDF

Chromatin-based modifications of herpesviral genomes play a crucial role in dictating the outcome of infection. Consistent with this, host cell multiprotein complexes, such as polycomb repressive complexes (PRCs), were proposed to act as epigenetic regulators of herpesviral latency. In particular, PRC2 has recently been shown to contribute to the silencing of human cytomegalovirus (HCMV) genomes.

View Article and Find Full Text PDF

The cellular protein SPOC1 (survival time-associated PHD [plant homeodomain] finger protein in ovarian cancer 1) acts as a regulator of chromatin structure and the DNA damage response. It binds H3K4me2/3-containing chromatin and promotes DNA condensation by recruiting corepressors such as KAP-1 and H3K9 methyltransferases. Previous studies identified SPOC1 as a restriction factor against human adenovirus (HAdV) infection that is antagonized by E1B-55K/E4-orf6-dependent proteasomal degradation.

View Article and Find Full Text PDF

The human cytomegalovirus (HCMV) IE2p86 protein is pivotal for coordinated regulation of viral gene expression. Besides functioning as a promiscuous transactivator, IE2p86 is also known to negatively regulate its own transcription. This occurs via direct binding of IE2p86 to a 14-bp palindromic DNA element located between the TATA box and the transcription start site of the major immediate-early promoter (MIEP), which is referred to as the repression signal (CRS).

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is an important, ubiquitous pathogen that causes severe clinical disease in immunocompromised individuals, such as organ transplant recipients and infants infected in utero. Antiviral chemotherapy remains problematic due to toxicity of the available compounds and the emergence of viruses resistant to available antiviral therapies. Antiviral antibodies could represent a valuable alternative strategy to limit the clinical consequences of viral disease in patients.

View Article and Find Full Text PDF

Previous studies identified the nuclear domain 10 (ND10) components promyelocytic leukemia protein (PML), hDaxx, and Sp100 as factors of an intrinsic immune response against human cytomegalovirus (HCMV). This antiviral function of ND10, however, is antagonized by viral effector proteins like IE1p72, which induces dispersal of ND10. Furthermore, we have shown that both major immediate early proteins of HCMV, IE1p72 and IE2p86, transiently colocalize with ND10 subnuclear structures and undergo modification by the covalent attachment of SUMO.

View Article and Find Full Text PDF

Unlabelled: PML nuclear bodies (NBs) are accumulations of cellular proteins embedded in a scaffold-like structure built by SUMO-modified PML/TRIM19. PML and other NB proteins act as cellular restriction factors against human cytomegalovirus (HCMV); however, this intrinsic defense is counteracted by the immediate early protein 1 (IE1) of HCMV. IE1 directly interacts with the PML coiled-coil domain via its globular core region and disrupts NB foci by inducing a loss of PML SUMOylation.

View Article and Find Full Text PDF

Eukaryotic nuclei are subdivided into subnuclear structures. Among the most prominent of these structures are the nucleolus and the PML nuclear bodies (PML-NBs). PML-NBs are spherical multiprotein aggregates of varying size localized in the interchromosomal area.

View Article and Find Full Text PDF

Neurofeedback (NF) is increasingly used as a therapy for attention-deficit/hyperactivity disorder (ADHD), however behavioral improvements require 20 plus training sessions. More economic evaluation strategies are needed to test methodological optimizations and mechanisms of action. In healthy adults, neuroplastic effects have been demonstrated directly after a single session of NF training.

View Article and Find Full Text PDF

The promyelocytic leukemia protein (PML) is the main structural component of the nuclear matrix structures termed nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs). PML and ND10 structures have been shown to mediate an intrinsic immune response against a variety of different viruses. Their role during retroviral replication, however, is still controversially discussed.

View Article and Find Full Text PDF

Unlabelled: PML is the organizer of cellular structures termed nuclear domain 10 (ND10) or PML-nuclear bodies (PML-NBs) that act as key mediators of intrinsic immunity against human cytomegalovirus (HCMV) and other viruses. The antiviral function of ND10 is antagonized by viral regulatory proteins such as the immediate early protein IE1 of HCMV. IE1 interacts with PML through its globular core domain (IE1CORE) and induces ND10 disruption in order to initiate lytic HCMV infection.

View Article and Find Full Text PDF

Promyelocytic leukemia nuclear bodies, also termed nuclear domain 10 (ND10), have emerged as nuclear protein accumulations mediating an intrinsic cellular defense against viral infections via chromatin-based mechanisms, however, their contribution to the control of herpesviral latency is still controversial. In this study, we utilized the monocytic cell line THP-1 as an in vitro latency model for human cytomegalovirus infection (HCMV). Characterization of THP-1 cells by immunofluorescence andWestern blot analysis confirmed the expression of all major ND10 components.

View Article and Find Full Text PDF

PML nuclear bodies (PML-NBs) are enigmatic structures of the cell nucleus that act as key mediators of intrinsic immunity against viral pathogens. PML itself is a member of the E3-ligase TRIM family of proteins that regulates a variety of innate immune signaling pathways. Consequently, viruses have evolved effector proteins to modify PML-NBs; however, little is known concerning structure-function relationships of viral antagonists.

View Article and Find Full Text PDF

One defining feature of eukaryotic cells is their compartmentalization into nucleus and cytoplasm which provides sophisticated opportunities for the regulation of gene expression. Accurate subcellular localization is crucial for the effective function of most viral macromolecules, and nuclear translocation is central to the function of herpesviral proteins that are involved in processes such as transcription or DNA replication. Human cytomegalovirus (HCMV) encodes several transactivator proteins which stimulate viral gene expression either on the transcriptional or posttranscriptional level.

View Article and Find Full Text PDF

Nuclear domain 10 (ND10) components are restriction factors that inhibit herpesviral replication. Effector proteins of different herpesviruses can antagonize this restriction by a variety of strategies, including degradation or relocalization of ND10 proteins. We investigated the interplay of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) infection and cellular defense by nuclear domain 10 (ND10) components.

View Article and Find Full Text PDF

Suppression of major histocompatibility complex (MHC) class I-mediated presentation of human cytomegalovirus (HCMV) peptides is an important mechanism to avoid CD8 T lymphocyte recognition and killing of infected cells. Of particular interest is how MHC class I presentation of essential regulatory immediate early (IE) proteins of HCMV can be effectively compromised at times when known viral immunoevasins are not abundantly expressed. The tegument protein pp71 had been suggested to be involved in MHC class I downregulation.

View Article and Find Full Text PDF

Recent studies have suggested that the small ubiquitin-related modifier (SUMO) conjugation pathway may play an important role in intrinsic antiviral resistance and thus for repression of herpesviral infections. In particular, it was shown that the herpes simplex virus type-1 regulatory protein ICP0 acts as a SUMO-targeted ubiquitin ligase (STUbL), inducing the widespread degradation of SUMO-conjugated proteins during infection. As the IE1 protein of human cytomegalovirus (HCMV) is known to mediate a de-SUMOylation of PML, we investigated whether HCMV uses a similar mechanism to counteract intrinsic antiviral resistance.

View Article and Find Full Text PDF

Promyelocytic leukemia (PML) nuclear bodies selectively associate with transcriptionally active genomic regions, including the gene-rich major histocompatibility (MHC) locus. In this paper, we have explored potential links between PML and interferon (IFN)-γ-induced MHC class II expression. IFN-γ induced a substantial increase in the spatial proximity between PML bodies and the MHC class II gene cluster in different human cell types.

View Article and Find Full Text PDF

In recent studies, the nuclear domain 10 (ND10) components PML, Sp100, human Daxx (hDaxx), and ATRX were identified to be cellular restriction factors that are able to inhibit the replication of several herpesviruses. The antiviral function of ND10, however, is antagonized by viral effector proteins by a variety of strategies, including degradation of PML or relocalization of ND10 proteins. In this study, we analyzed the interplay between infection with herpesvirus saimiri (HVS), the prototypic rhadinovirus, and cellular defense by ND10.

View Article and Find Full Text PDF