Biochemistry (Mosc)
April 2023
The processes of biotransformation of pantothenic acid (Pan) in the biosynthesis and hydrolysis of CoA, key role of pantothenate kinase (PANK) and CoA synthetase (CoASY) in the formation of the priority mitochondrial pool of CoA, with a high metabolic turnover of the coenzyme and limited transport of Pan across the blood-brain barrier are considered. The system of acetyl-CoA, a secondary messenger, which is the main substrate of acetylation processes including formation of N-acetyl aspartate and acetylcholine, post-translational modification of histones, predetermines protection of the neurons against degenerative signals and cholinergic neurotransmission. Biochemical mechanisms of neurodegenerative syndromes in the cases of PANK and CoASY defects, and the possibility of correcting of CoA biosynthesis in the models with knockouts of these enzymes have been described.
View Article and Find Full Text PDFWe investigated the nephroprotective effect of D-panthenol in rhabdomyolysis-induced acute kidney injury (AKI). Adult male Wistar rats were injected with 50% glycerol solution to induce rhabdomyolysis. Animals with rhabdomyolysis were injected with D-panthenol (200 mg/kg) for 7 days.
View Article and Find Full Text PDFThe glutathione system in the mitochondria of the brain plays an important role in maintaining the redox balance and thiol-disulfide homeostasis, whose violations are the important component of the biochemical shifts in neurodegenerative diseases. Mitochondrial dysfunction is known to be accompanied by the activation of free radical processes, changes in energy metabolism, and is involved in the induction of apoptotic signals. The formation of disulfide bonds is a leading factor in the folding and maintenance of the three-dimensional conformation of many specific proteins that selectively accumulate in brain structures during neurodegenerative pathology.
View Article and Find Full Text PDF