LiN is an excellent protective coating material for lithium electrodes with very high lithium-ion conductivity and low electronic conductivity, but the formation of stable and homogeneous coatings is technically very difficult. Here, we show that protective LiN coatings can be simply formed by the direct reaction of electrodeposited lithium electrodes with N gas, whereas using battery-grade lithium foil is problematic due to the presence of a native passivation layer that hampers that reaction. The protective LiN coating is effective at preventing lithium dendrite formation, as found from unidirectional plating and plating-stripping measurements in Li-Li cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2022
The combination of solid and liquid electrolytes enables the development of safe and high-energy batteries where the solid electrolyte acts as a protective barrier for a high-energy lithium metal anode, while the liquid electrolyte maintains facile electrochemical reactions with the cathode. However, the contact region between the solid and liquid electrolytes is associated with a very high resistance, which severely limits the specific energy that can be practically delivered. In this work, we demonstrate a suitable approach to virtually suppress such interfacial resistance.
View Article and Find Full Text PDF