ACS Appl Mater Interfaces
August 2019
Around 100 nm thick TiO layers deposited by atomic layer deposition (ALD) have been investigated as anticorrosion protective films for silicon-based photoanodes decorated with 5 nm NiFe catalyst in highly alkaline electrolyte. Completely amorphous layers presented high resistivity; meanwhile, the ones synthesized at 300 °C, having a fully anatase crystalline TiO structure, introduced insignificant resistance, showing direct correlation between crystallization degree and electrical conductivity. The conductivity through crystalline TiO layers has been found not to be homogeneous, presenting preferential conduction paths attributed to grain boundaries and defects within the crystalline structure.
View Article and Find Full Text PDFThe present study outlines the important steps to bring electrochemical conversion of carbon dioxide (CO) closer to commercial viability by using a large-scale metallic foam electrode as a highly conductive catalyst scaffold. Because of its versatility, it was possible to specifically tailor three-dimensional copper foam through coating with silver dendrite catalysts by electrodeposition. The requirements of high-yield CO conversion to carbon monoxide (CO) were met by tuning the deposition parameters toward a homogeneous coverage of the copper foam with nanosized dendrites, which additionally featured crystallographic surface orientations favoring CO production.
View Article and Find Full Text PDFNeural electrode implants are made mostly of noble materials. We have synthesized a nanostructured material combining the good electrochemical properties of iridium oxide (IrOx) and carbon-nanotubes (CNT) and the properties of poly(3,4-ethylenedioxythiophene) (PEDOT). IrOx-CNT-PEDOT charge storage capacity was lower than that of IrOx and IrOx-CNT, but higher than that of other PEDOT-containing hybrids and Pt.
View Article and Find Full Text PDFThe ability of crystalline silicon to photoassist the V /V cathodic reaction under simulated solar irradiation, combined with the effect of bismuth have led to important electrochemical improvements. Besides the photovoltage supplied by the photovoltaics, additional decrease in the onset potentials, high reversibility of the V /V redox pair, and improvement in the electrokinetics were attained thanks to the addition of bismuth. In fact, Bi deposition has shown to slightly decrease the photocurrent, but the significant enhancement in the charge transfer, reflected in the overall electrochemical performance clearly justifies its use as additive in a photoassisted system for maximizing the efficiency of solar charge to battery.
View Article and Find Full Text PDFNanostructured iridium oxide-carbon nanotube hybrids (IrOx-CNT) deposited as thin films by dynamic electrochemical methods are suggested as novel materials for neural electrodes. Single-walled carbon nanotubes (SWCNT) serve as scaffolds for growing the oxide, yielding a tridimensional structure with improved physical, chemical and electrical properties, in addition to high biocompatibility. In biological environments, SWCNT encapsulation by IrOx makes more resistant electrodes and prevents the nanotube release to the media, preventing cellular toxicity.
View Article and Find Full Text PDF