Although drug-eluting stents have dramatically reduced the recurrence of restenosis after vascular interventions, the nonselective antiproliferative drugs released from these devices significantly delay reendothelialization and vascular healing, increasing the risk of short- and long-term stent failure. Efficient repopulation of endothelial cells in the vessel wall following injury may limit complications, such as thrombosis, neoatherosclerosis, and restenosis, through reconstitution of a luminal barrier and cellular secretion of paracrine factors. We assessed the potential of magnetically mediated delivery of endothelial cells (ECs) to inhibit in-stent stenosis induced by mechanical injury in a rat carotid artery stent angioplasty model.
View Article and Find Full Text PDFAim: To assess functional competence and gene expression of magnetic nanoparticle (MNP)-loaded primary endothelial cells (ECs) as potential cell-based therapy vectors.
Materials & Methods: A quantitative tube formation, nitric oxide and adhesion assays were conducted to assess functional potency of the MNP-loaded ECs. A quantitative real-time PCR was used to profile genes in both MNP-loaded at static conditions and in vitro targeted ECs.