Publications by authors named "Nina Kravets"

We report on a chiral optical Stern-Gerlach experiment where chiral liquid crystal microspheres are selectively displaced by means of optical forces arising from optical helicity gradients. The present Newtonian experimental demonstration of an effect predicted at molecular scale [New J. Phys.

View Article and Find Full Text PDF

We propose the development of a high-contrast imaging technique enabling the simultaneous and selective nulling of several light sources. This is done by realizing a reconfigurable multiple-vortex phase mask made of a liquid crystal thin film on which local topological features can be addressed electro-optically. The method is illustrated by reporting on a triple-star optical vortex coronagraphy laboratory demonstration, which can be easily extended to higher multiplicity.

View Article and Find Full Text PDF

We investigate, both theoretically and experimentally, self-trapping of light beams in nematic liquid crystals arranged so as to exhibit the optical Fréedericksz transition in planar cells. The resulting threshold in the nonlinear reorientational response supports a bistable behavior between diffracting and self-localized beam states, leading to the appearance of a hysteretic loop versus input excitation. Our results confirm the role of nematic liquid crystals in the study of non-perturbative nonlinear photonics.

View Article and Find Full Text PDF

Refraction at a dielectric interface can take an anomalous character in anisotropic crystals, when light is negatively refracted with incident and refracted beams emerging on the same side of the interface normal. In soft matter subject to reorientation, such as nematic liquid crystals, the nonlinear interaction with light allows tuning of the optical properties. We demonstrate that in such material a beam of light can experience either positive or negative refraction depending on input power, as it can alter the spatial distribution of the optic axis and, in turn, the direction of the energy flow when traveling across an interface.

View Article and Find Full Text PDF

We theoretically investigate light self-trapping in nonlinear dielectrics with a reorientational response subject to threshold, specifically nematic liquid crystals. Beyond a finite excitation, two solitary waves exist for any given power, with an hysteretic dynamics due to feedback between beam size, self-focusing and the nonlinear threshold. Soliton stability is discussed on the basis of the system free energy.

View Article and Find Full Text PDF

We investigated bistability with light beams in reorientational nematic liquid crystals. For a range of input powers, beams can propagate as either diffracting or self-trapped, the latter corresponding to spatial solitons. The first-order transition in samples exhibiting abrupt self-focusing with a threshold is in agreement with a simple model.

View Article and Find Full Text PDF