Ischemic conditioning and exercise have been suggested for protecting against brain ischemia-reperfusion injury. However, the endogenous protective mechanisms stimulated by these interventions remain unclear. Here, in a comprehensive translational study, we investigated the protective role of extracellular vesicles (EVs) released after remote ischemic conditioning (RIC), blood flow restricted resistance exercise (BFRRE), or high-load resistance exercise (HLRE).
View Article and Find Full Text PDFDespite successful recanalization, a significant number of patients with ischemic stroke experience impaired local brain tissue reperfusion with adverse clinical outcome. The cause and mechanism of this multifactorial complication are yet to be understood. At the current moment, major attention is given to dysfunction in blood-brain barrier and capillary blood flow but contribution of exaggerated constriction of cerebral arterioles has also been suggested.
View Article and Find Full Text PDFBackground: The high mortality and morbidity after SAH is partly due to DCI, which is traditionally ascribed to development of angiographic vasospasms. This relation has been challenged, and capillary flow disturbances are proposed as another mechanism contributing to brain damage after SAH.
Objective: To investigate capillary flow changes 4 days following experimental SAH.
Functional hyperemia reduces oxygen extraction efficacy unless counteracted by a reduction of capillary transit-time heterogeneity of blood. We adapted a bolus tracking approach to capillary transit-time heterogeneity estimation for two-photon microscopy and then quantified changes in plasma mean transit time and capillary transit-time heterogeneity during forepaw stimulation in anesthetized mice (C57BL/6NTac). In addition, we analyzed transit time coefficient of variance = capillary transit-time heterogeneity/mean transit time, which we expect to remain constant in passive, compliant microvascular networks.
View Article and Find Full Text PDFThe mortality after aneurysmal subarachnoid hemorrhage (SAH) is 50%, and most survivors suffer severe functional and cognitive deficits. Half of SAH patients deteriorate 5 to 14 days after the initial bleeding, so-called delayed cerebral ischemia (DCI). Although often attributed to vasospasms, DCI may develop in the absence of angiographic vasospasms, and therapeutic reversal of angiographic vasospasms fails to improve patient outcome.
View Article and Find Full Text PDFThe pathophysiology of cerebral ischemia is traditionally understood in relation to reductions in cerebral blood flow (CBF). However, a recent reanalysis of the flow-diffusion equation shows that increased capillary transit time heterogeneity (CTTH) can reduce the oxygen extraction efficacy in brain tissue for a given CBF. Changes in capillary morphology are typical of conditions predisposing to stroke and of experimental ischemia.
View Article and Find Full Text PDF