Therapeutic vaccination against chronic hepatitis B must overcome high viral antigen load and local regulatory mechanisms that promote immune-tolerance in the liver and curtail hepatitis B virus (HBV)-specific CD8 T cell immunity. Here, we report that therapeutic heterologous HBcore-protein-prime/Modified-Vaccinia-Virus-Ankara (MVA-HBcore) boost vaccination followed by CpG-application augmented vaccine-induced HBcAg-specific CD8 T cell-function in the liver. In HBV-transgenic as well as AAV-HBV-transduced mice with persistent high-level HBV-replication, the combination of therapeutic vaccination with subsequent CpG-application was synergistic to generate more potent HBV-specific CD8 T cell immunity that improved control of hepatocytes replicating HBV.
View Article and Find Full Text PDFThe liver bears unique immune properties that support both immune tolerance and immunity, but the mechanisms responsible for clearance versus persistence of virus-infected hepatocytes remain unclear. Here, we dissect the factors determining the outcome of antiviral immunity using recombinant adenoviruses that reflect the hepatropism and hepatrophism of hepatitis viruses. We generated replication-deficient adenoviruses with equimolar expression of ovalbumin, luciferase, and green fluorescent protein driven by a strong ubiquitous cytomegalovirus (CMV) promoter (Ad-CMV-GOL) or by 100-fold weaker, yet hepatocyte-specific, transthyretin (TTR) promoter (Ad-TTR-GOL).
View Article and Find Full Text PDF