Graphene oxide (GO) is obtained by the chemical treatment of graphene sheets, resulting in decoration with oxygen-containing functional groups. In the work presented here, we examined marked changes that occur in a thin film of parallel aligned GO sheets when exposed to water vapor at various pressures. It was found that exceptionally fast and substantial water uptake and release occur that is accompanied by major changes in GO interlayer spacing.
View Article and Find Full Text PDFCreating artificial matter with controllable chirality in a simple and scalable manner brings new opportunities to diverse areas. Here we show two such methods based on controlled vacuum filtration - twist stacking and mechanical rotation - for fabricating wafer-scale chiral architectures of ordered carbon nanotubes (CNTs) with tunable and large circular dichroism (CD). By controlling the stacking angle and handedness in the twist-stacking approach, we maximize the CD response and achieve a high deep-ultraviolet ellipticity of 40 ± 1 mdeg nm.
View Article and Find Full Text PDFMED20 is a non-essential subunit of the transcriptional coactivator Mediator complex, but its physiological function remains largely unknown. Here, we identify MED20 as a substrate of the anti-obesity CRL4-WDTC1 E3 ubiquitin ligase complex through affinity purification and candidate screening. Overexpression of WDTC1 leads to degradation of MED20, whereas depletion of WDTC1 or CUL4A/B causes accumulation of MED20.
View Article and Find Full Text PDFWe demonstrate spectrally-tunable Fabry-Perot bandpass filters operating across the MWIR by utilizing the phase-change material GeSbTe (GST) as a tunable cavity medium between two (Ge:Si) distributed Bragg reflectors. The induced refractive index modulation of GST increases the cavity's optical path length, red-shifting the passband. Our filters have spectral-tunability of ∼300 nm, transmission efficiencies of 60-75% and narrowband FWHMs of 50-65 nm (Q-factor ∼70-90).
View Article and Find Full Text PDFConcentrator photovoltaic (CPV) systems, where incident direct solar radiation is tightly concentrated onto high-efficiency multi-junction solar cells by geometric optical elements, exhibit the highest efficiencies in converting the sun's energy into electric power. Their energy conversion efficiencies are greatly limited, however, due to Fresnel reflection losses occurring at three air/optics interfaces in the most sophisticated dual-stage CPV platforms. This paper describes a facile one-step wet-etching process to create a nanoporous surface with a graded-index profile on both flat and curved glasses, with capabilities of achieving ~99% average transmission efficiency in a wide wavelength range from 380 nm to 1.
View Article and Find Full Text PDFHyperbolic metamaterials are optical materials characterized by highly anisotropic effective permittivity tensor components having opposite signs along orthogonal directions. The techniques currently employed for characterizing the optical properties of hyperbolic metamaterials are limited in their capability for robust extraction of the complex permittivity tensor. Here we demonstrate how an ellipsometry technique based on total internal reflection can be leveraged to extract the permittivity of hyperbolic metamaterials with improved robustness and accuracy.
View Article and Find Full Text PDFObjective: To explore the relationship between coronary collateral circulation following percutaneous coronary intervention (PCI) for a single left anterior descending artery and the recovery of cardiac function.
Methods: A total of 625 patients with coronary heart disease were retrospectively analyzed, who received selective coronary angiography demonstrating lesions involving a single left anterior descending artery and underwent stent placement between January, 2010 and December, 2012. According to Rentrop's classification, the patients were divided into group A (n=280) with Rentrop grades 1-3 and group B (n=325) with Rentrop grade 0.
M13 bacteriophages are assembled via a covalent layer-by-layer process to form a highly nanoporous network capable of organizing nanoparticles and acting as a scaffold for templating metal-oxides. The morphological and optical properties of the film itself are presented as well as its ability to organize and disperse metal nanoparticles.
View Article and Find Full Text PDF