Collagen IX (Col IX) is an important component of the cartilage extracellularmatrix and has been associated with degenerative cartilage disorders and chondrodysplasias in humans. Further, polymorphisms in Col IX are known risk factors for the development of early intervertebral disc (IVD) degeneration. To understand the role of Col IX in the pathogenesis of IVD disorders, the spine of newborn and older Col IX deficient mice was systematically analyzed and compared to C57BL/6N controls.
View Article and Find Full Text PDFMechanical loading influences the structural and mechanical properties of articular cartilage. The cartilage matrix protein collagen II essentially determines the tensile properties of the tissue and is adapted in response to loading. The collagen II network is stabilized by the collagen II-binding cartilage oligomeric matrix protein (COMP), collagen IX, and matrilin-3.
View Article and Find Full Text PDFBackground: Thumb orthoses have to reconcile and satisfy competing goals: stability and mobility. The purpose of the study was to characterize the stabilization effectiveness and functionality of different thumb carpometacarpal osteoarthritis orthoses.
Methods: Eighteen female carpometacarpal osteoarthritis subjects were included.
Purpose: To investigate the influence of trapeziometacarpal (TMC) osteoarthritis (OA) on the 3-dimensional motion capability of the TMC and thumb metacarpophalangeal (MCP) joints. In order to examine other factors affecting the thumb's motion kinematics, we further aimed to address the influence of sex and handedness on the motion capability of normal TMC and MCP joints.
Methods: We included 18 healthy subjects (9 women, 9 men; 8 dominant hands, 10 nondominant hands) and 18 women with stage II/III TMC OA.
In osteoarthritis animal models the rat knee is one of the most frequently investigated joint. However, it is unknown whether topographical variations in articular cartilage and subchondral bone of the normal rat knee exist and how they are linked or influenced by growth and maturation. Detailed knowledge is needed in order to allow interpretation and facilitate comparability of published osteoarthritis studies.
View Article and Find Full Text PDFBotulinum toxin A (BTX)-induced muscle paralysis results in pronounced bone degradation with substantial bone loss. We hypothesized that whole-body vibration (WBV) and insulin-like growth factor-I (IGF-I) treatment can counteract paralysis-induced bone degradation following BTX injections by activation of the protein kinase B (Akt) signaling pathway. Female C57BL/6 mice (n = 60, 16 weeks) were assigned into six groups (n = 10 each): SHAM, BTX, BTX+WBV, BTX+IGF-I, BTX+WBV+IGF-I, and a baseline group, which was killed at the beginning of the study.
View Article and Find Full Text PDFObjective: To generate doxycycline-inducible human tumor necrosis factor α (TNFα)-transgenic mice to overcome a major disadvantage of existing transgenic mice with constitutive expression of TNFα, which is the limitation in crossing them with various knockout or transgenic mice.
Methods: A transgenic mouse line that expresses the human TNFα cytokine exclusively after doxycycline administration was generated and analyzed for the onset of diseases.
Results: Doxycycline-inducible human TNFα-transgenic mice developed an inflammatory arthritis- and psoriasis-like phenotype, with fore and hind paws being prominently affected.
Articular cartilage and subchondral bone act together, forming a unit as a weight-bearing loading-transmitting surface. A close interaction between both structures has been implicated during joint cartilage degeneration, but their coupling during normal growth and development is insufficiently understood. The purpose of the present study was to examine growth-related changes of cartilage mechanical properties and to relate these changes to alterations in cartilage biochemical composition and subchondral bone structure.
View Article and Find Full Text PDFMechanical loading is essential for bone development and prevention of age-related bone diseases. Muscular contractions during physical activity and the generated strain magnitude are primary determinants for the osteogenic response. However, the adaptation capacity of bones, especially due to different muscle contraction types, is largely unknown.
View Article and Find Full Text PDF