Publications by authors named "Nina Hafer-Hahmann"

How does diversity in nature come about? One factor contributing to this diversity are species interactions; diversity on one trophic level can shape diversity on lower or higher trophic levels. For example, parasite diversity enhances host immune diversity. Insect protective symbionts mediate host resistance and are, therefore, also engaged in reciprocal selection with their host's parasites.

View Article and Find Full Text PDF

Protective symbionts can provide effective and specific protection to their hosts. This protection can differ between different symbiont strains with each strain providing protection against certain components of the parasite and pathogen community their host faces. Protective symbionts are especially well known from aphids where, among other functions, they provide protection against different parasitoid wasps.

View Article and Find Full Text PDF

Immune systems have repeatedly diversified in response to parasite diversity. Many animals have outsourced part of their immune defence to defensive symbionts, which should be affected by similar evolutionary pressures as the host's own immune system. Protective symbionts provide efficient and specific protection and respond to changing selection pressure by parasites.

View Article and Find Full Text PDF

Evolutionary genomics has recently entered a new era in the study of host-pathogen interactions. A variety of novel genomic techniques has transformed the identification, detection and classification of both hosts and pathogens, allowing a greater resolution that helps decipher their underlying dynamics and provides novel insights into their environmental context. Nevertheless, many challenges to a general understanding of host-pathogen interactions remain, in particular in the synthesis and integration of concepts and findings across a variety of systems and different spatiotemporal and ecological scales.

View Article and Find Full Text PDF

Many parasites alter their host's phenotype in a manner that enhances their own fitness beyond the benefits they would gain from normal exploitation. Such host manipulation is rarely consistent with the host's best interests resulting in suboptimal and often fatal behavior from the host's perspective. In this case, hosts should evolve resistance to host manipulation.

View Article and Find Full Text PDF

Host manipulation is a parasite-induced alteration of a host's phenotype that increases parasite fitness. However, if genetically encoded in the parasite, it should be under selection in the parasite. Such host manipulation has often been assumed to be energetically costly, which should restrict its evolution.

View Article and Find Full Text PDF