Publications by authors named "Nina Gunde Cimerman"

Aureobasidium melanogenum is a black yeast-like fungus that occurs frequently both in nature and in domestic environments. It is becoming increasingly important as an opportunistic pathogen. Nevertheless, its effect on human cells has not yet been studied.

View Article and Find Full Text PDF

As the Earth warms, alternatives to traditional farming are crucial. Exploring fungi, especially poly extremophilic and extremotolerant species, to be used as plant probiotics, represents a promising option. Extremophilic fungi offer avenues for developing and producing innovative biofertilizers, effective biocontrol agents against plant pathogens, and resilient enzymes active under extreme conditions, all of which are crucial to enhance agricultural efficiency and sustainability through improved soil fertility and decreased reliance on agrochemicals.

View Article and Find Full Text PDF

Converting waste into high-value products promotes sustainability by reducing waste and creating new revenue streams. This study investigates the potential of diverse yeasts for microbial oil production by utilizing short-chain fatty acids (SCFAs) that can be produced from organic waste and focuses on identifying strains with the best SCFA utilisation, tolerance and lipid production. A collection of 1434 yeast strains was cultivated with SCFAs as the sole carbon source.

View Article and Find Full Text PDF

The growing amount of plastic waste requires new ways of disposal or recycling. Research into the biodegradation of recalcitrant plastic polymers is gathering pace. Despite some progress, these efforts have not yet led to technologically and economically viable applications.

View Article and Find Full Text PDF

Experimental evolution was carried out to investigate the adaptive responses of extremotolerant fungi to a stressful environment. For 12 cultivation cycles, the halotolerant black yeasts Aureobasidium pullulans and Aureobasidium subglaciale were grown at high NaCl or glycerol concentrations, and the halophilic basidiomycete Wallemia ichthyophaga was grown close to its lower NaCl growth limit. All evolved Aureobasidium spp.

View Article and Find Full Text PDF

Sodin 5 is a type 1 ribosome-inactivating protein isolated from the seeds of L., an edible halophytic plant that is widespread in southern Europe, close to the coast. This plant, known as 'agretti', is under consideration as a new potential crop on saline soils.

View Article and Find Full Text PDF

Global climate changes threaten food security, necessitating urgent measures to enhance agricultural productivity and expand it into areas less for agronomy. This challenge is crucial in achieving Sustainable Development Goal 2 (Zero Hunger). Plant growth-promoting microorganisms (PGPM), bacteria and fungi, emerge as a promising solution to mitigate the impact of climate extremes on agriculture.

View Article and Find Full Text PDF

Extremotolerant and extremophilic fungi are an important part of microbial communities that thrive in extreme environments. Among them, the black yeasts are particularly adaptable. They use their melanized cell walls and versatile morphology, as well as a complex set of molecular adaptations, to survive in conditions that are lethal to most other species.

View Article and Find Full Text PDF

Fungi are important contaminants of historic canvas paintings worldwide. They can grow on both sides of the canvas and decompose various components of the paintings. They excrete pigments and acids that change the visual appearance of the paintings and weaken their structure, leading to flaking and cracking.

View Article and Find Full Text PDF

Historically valuable canvas paintings are often exposed to conditions enabling microbial deterioration. Painting materials, mainly of organic origin, in combination with high humidity and other environmental conditions, favor microbial metabolism and growth. These preconditions are often present during exhibitions or storage in old buildings, such as churches and castles, and also in museum storage depositories.

View Article and Find Full Text PDF

Safe drinking water is a constant challenge due to global environmental changes and the rise of emerging pathogens-lately, these also include fungi. The fungal presence in water greatly varies between sampling locations. Little is known about fungi from water in combination with a selection of materials used in water distribution systems.

View Article and Find Full Text PDF

Halophilic fungi thrive in hypersaline habitats and face a range of extreme conditions. These fungal species have gained considerable attention due to their potential applications in harsh industrial processes, such as bioremediation and fermentation under unfavorable conditions of hypersalinity, low water activity, and extreme pH. However, the role of the cell wall in surviving these environmental conditions remains unclear.

View Article and Find Full Text PDF

The urgent need for better disposal and recycling of plastics has motivated a search for microbes with the ability to degrade synthetic polymers. While microbes capable of metabolizing polyurethane and polyethylene terephthalate have been discovered and even leveraged in enzymatic recycling approaches, microbial degradation of additive-free polypropylene (PP) remains elusive. Here we report the isolation and characterization of two fungal strains with the potential to degrade pure PP.

View Article and Find Full Text PDF

The European Union currently has no specific regulations on fungi in water. The only country where fungi are listed as the parameter is Sweden, with the maximal number of 100 CFU per 100 mL. The present study thus compared culturable mycobiota from Swedish drinking water with Slovenian, which has no specific requirements for fungi.

View Article and Find Full Text PDF

For the first time, the International Symposium on Fungal Stress was joined by the XIII International Fungal Biology Conference. The International Symposium on Fungal Stress (ISFUS), always held in Brazil, is now in its fourth edition, as an event of recognized quality in the international community of mycological research. The event held in São José dos Campos, SP, Brazil, in September 2022, featured 33 renowned speakers from 12 countries, including: Austria, Brazil, France, Germany, Ghana, Hungary, México, Pakistan, Spain, Slovenia, USA, and UK.

View Article and Find Full Text PDF

There are few places on Earth that are truly aseptic. Even environments that we may consider 'extreme', such as glaciers, deserts, or hypersaline bodies of water (Figure 1), can harbour life. The organisms that thrive in such environments - mostly microbes - are often referred to as 'extremophiles'.

View Article and Find Full Text PDF

Obligate halophily is extremely rare in fungi. Nevertheless, (strain EXF-6660), isolated from a salt water-exposed cave in the Coastal Range hills of the hyperarid Atacama Desert in Chile, is an obligate halophile, with a broad optimum range from 1.5 to 3.

View Article and Find Full Text PDF

Natural weathering test at two different European climatic zones were conducted to investigate simultaneously both, the fungal colonisation and weathering process of Scots pine wood ( L.). The hypothesis was that the wood performing differently in various climate conditions might affect fungal infestation.

View Article and Find Full Text PDF

The initiation of this study relies on a targeted genome-mining approach to highlight the presence of a putative vanadium-dependent haloperoxidase-encoding gene in the deep-sea hydrothermal vent fungus Hortaea werneckii UBOCC-A-208029. To date, only three fungal vanadium-dependent haloperoxidases have been described, one from the terrestrial species Curvularia inaequalis, one from the fungal plant pathogen Botrytis cinerea, and one from a marine derived isolate identified as Alternaria didymospora. In this study, we describe a new vanadium chloroperoxidase from the black yeast H.

View Article and Find Full Text PDF

Dialdehyde cellulose nanofibrils (CNF) and nanocrystals (CNC) were prepared via periodate oxidation (CNF/CNC-ox) and subsequently functionalized with hexamethylenediamine (HMDA) via a Schiff-base reaction, resulting in partially crosslinked micro-sized (0.5-10 μm) particles (CNF/CNC-ox-HMDA) with an aggregation and sedimentation tendency in an aqueous media, as assessed by Dynamic Light Scattering and Scanning Electron Microscopy. The antibacterial efficacy, aquatic in vivo (to Daphnia magna) and human in vitro (to A594 lung cells) toxicities, and degradation profiles in composting soil of all forms of CNF/CNC were assessed to define their safety profile.

View Article and Find Full Text PDF

Hypersaline waters and glacial ice are inhospitable environments that have low water activity and high concentrations of osmolytes. They are inhabited by diverse microbial communities, of which extremotolerant and extremophilic fungi are essential components. Some fungi are specialized in only one of these two environments and can thrive in conditions that are lethal to most other life-forms.

View Article and Find Full Text PDF

Low-cost, readily available, or even disposable membranes in water purification or downstream biopharma processes are becoming attractive alternatives to expensive polymeric columns or filters. In this article, the potential of microfiltration membranes prepared from differently orientated viscose fibre slivers, infused with ultrafine quaternised (qCNF) and amino-hydrophobised (aCNF) cellulose nanofibrils, were investigated for capturing and deactivating the bacteria from water during vacuum filtration. The morphology and capturing mechanism of the single- and multi-layer structured membranes were evaluated using microscopic imaging and colloidal particles.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are increasingly recognized as an important mechanism for cell-cell interactions. Their role in fungi is still poorly understood and they have been isolated from only a handful of species. Here, we isolated and characterized EVs from Aureobasidium pullulans, a biotechnologically important black yeast-like fungus that is increasingly used for biocontrol of phytopathogenic fungi and bacteria.

View Article and Find Full Text PDF