Ionizing radiation induced transformations in materials were monitored through tracking of the generation and degradation processes of radical species. Consequently, the types and quantities of radicals were determined by electron spin resonance (ESR). Subsequently, differential scanning calorimetry (DSC) was utilized to assess the impact of irradiation on the material crystallinity.
View Article and Find Full Text PDFX-ray and electron-beam (E-beam) sterilization technologies were assessed to supplement gamma sterilization, the most common radiation technology used today for biopharmaceutical product sterilization. The mechanical properties of a PE/EVOH/PE film were studied using tensile tests and dynamical mechanical analysis after each irradiation technology (i.e.
View Article and Find Full Text PDFGamma-ray irradiation, using the cobalt-60 isotope, is the most common radiation modality used for medical device and biopharmaceutical products sterilization. Although X-ray and electron-beam (e-beam) sterilization technologies are mature and have been in use for decades, impediments remain to switching to these sterilization modalities because of lack of data on the resulting radiation effects for the associated polymers, as well as a lack of education for manufacturers and regulators on the viability of these sterilization alternatives. For this study, the compatibility of ethylene vinyl acetate (EVA) multilayer films with different ionizing radiation sterilization (X-ray, e-beam, and gamma irradiation) is determined by measuring chemical and physical film properties using high performance liquid chromatography, differential scanning calorimetry, Fourier-Transform InfraRed spectroscopy (FTIR), surface energy measurement, and electron spin resonance techniques.
View Article and Find Full Text PDFTo increase sterilization capacity, X-ray and e-beam irradiation modalities are more and more attractive for the indutrial sterilization of heathcare products (medical devices and biopharmaceutical goods). However, no study comparing these different techniques are available concerning multi-layer films. Thus, with the PE/EVOH/PE multilayer film as a model, we show that, whatever the modality of irradiation, the thermal properties are not significantly changed as shown by DSC, and, as such, the physical and mechanical properties of this material are also expected to behave similarly.
View Article and Find Full Text PDFIn this study, the oxidation of methionine is used as a proxy to model the gamma radiation-induced changes in single-use bags; these changes lead to the formation of acids, radicals, and hydroperoxides. The mechanisms of formation of these reactive species and of methionine oxidation are discussed. With the help of reaction kinetics, the optimal conditions for the use of these single-use bags minimizing the impact of radical chemistry are highlighted.
View Article and Find Full Text PDF