Introduction: Topical photodynamic therapy (PDT) refers to topical application of a photosensitizer onto the site of skin disease which is followed by illumination and results in death of selected cells. The main problem in topical PDT is insufficient penetration of the photosensitizer into the skin, which limits its use to superficial skin lesions. In order to overcome this problem, recent studies tested liposomes as delivery systems for photosensitizers.
View Article and Find Full Text PDFThe aim of this study was to investigate the influence of membrane-softening components (terpenes/terpene mixtures, ethanol) on fluidity of phospholipid membranes in invasomes, which contain besides phosphatidylcholine and water, also ethanol and terpenes. Also mTHPC was incorporated into invasomes in order to study its molecular interaction with phospholipids in vesicular membranes. Fluidity of bilayers was investigated by electron spin resonance (ESR) using spin labels 5- and 16-doxyl stearic acid and by differential scanning calorimetry (DSC).
View Article and Find Full Text PDFIn the case of cutaneous malignant or non-malignant diseases, topical photodynamic therapy (PDT) with a temoporfin (mTHPC)-containing formulation would be advantageous. Unfortunately, mTHPC is a highly hydrophobic drug with low percutaneous absorption and novel mTHPC-loaded invasomes for enhanced skin delivery were developed. The purpose of this study was to investigate photodynamic efficacy of mTHPC-loaded invasomes in vitro in two cell lines, i.
View Article and Find Full Text PDFIn order to increase topical delivery of temoporfin (mTHPC), a highly hydrophobic photosensitizer with low percutaneous penetration, neutral, anionic and cationic flexible liposomes (i.e. flexosomes) were prepared and investigated for their penetration enhancing ability.
View Article and Find Full Text PDFThe aim of this study was to develop ethanol-containing (3.3-20%, w/v) liposomes loaded with temoporfin (mTHPC), which presents a highly hydrophobic photosensitizer with low percutaneous penetration, and to investigate their skin penetration enhancing effect. Characterization parameters of liposomes were measured by photon correlation spectroscopy, lamellarity was analyzed by cryo-electron microscopy and mTHPC-content in formulations was determined spectrofotometrically.
View Article and Find Full Text PDFTemoporfin (mTHPC) is a potent second-generation photosensitizer. The primary object of this study was to develop a topical mTHPC-loaded liposomal hydrogel able to deliver mTHPC into the stratum corneum (SC) and deeper skin layers. This study was conducted (1) to determine the effect of carbomer concentration, used as a gelling agent, and the effect of phosphatidylcholine (PC) content of lecithin, used for the liposome preparation, on viscoelastic properties and viscosity of liposomal gels and (2) to determine the relationship between rheological properties of gels and the skin penetration of mTHPC.
View Article and Find Full Text PDFA previous study revealed that the invasome dispersion containing 3.3% (w/v) ethanol and 1% (w/v) of the terpene mixture (cineole:citral:d-limonene=45:45:10, v/v=standard mixture) could significantly enhance skin penetration of the highly hydrophobic photosensitizer temoporfin (mTHPC). Invasomes enhanced mTHPC-deposition in stratum corneum (SC) compared to liposomes without terpenes and conventional liposomes, and they were efficient in delivering mTHPC to deeper skin layers [J.
View Article and Find Full Text PDFTemoporfin (mTHPC) represents a very potent second-generation synthetic photosensitizer. It has shown to be effective in the photodynamic therapy of early or recurrent oral carcinomas, in the palliative treatment of refractory oral carcinomas and in the treatment of primary non-melanomatous tumours of the skin of the head and neck. Until now for all positive findings an intravenous application of the photosensitizer was mandatory.
View Article and Find Full Text PDFTemoporfin (mTHPC) is a highly hydrophobic second generation photosensitizer with low percutaneous penetration. In order to enhance its percutaneous penetration it was necessary to develop a mTHPC-loaded drug carrier system for enhanced skin delivery. mTHPC-loaded invasomes were developed, characterized and investigated for the in vitro percutaneous penetration of mTHPC into abdominal human skin using Franz diffusion cells.
View Article and Find Full Text PDF