Color centers integrated with nanophotonic devices have emerged as a compelling platform for quantum science and technology. Here, we integrate tin-vacancy centers in a diamond waveguide and investigate the interaction with light at the single-photon level in both reflection and transmission. We observe single-emitter-induced extinction of the transmitted light up to 25% and measure the nonlinear effect on the photon statistics.
View Article and Find Full Text PDFMagnetic imaging with nitrogen-vacancy (NV) spins in diamond is becoming an established tool for studying nanoscale physics in condensed matter systems. However, the optical access required for NV spin readout remains an important hurdle for operation in challenging environments such as millikelvin cryostats or biological systems. Here, we demonstrate a scanning-NV sensor consisting of a diamond nanobeam that is optically coupled to a tapered optical fiber.
View Article and Find Full Text PDF