Alzheimer's disease (AD) patients exhibit neuropsychiatric symptoms that extend beyond classical cognitive deficits, suggesting involvement of subcortical areas. Here, we investigated the role of midbrain dopamine (DA) neurons in AD using the amyloid + tau-driven 3xTg-AD mouse model. We found deficits in reward-based operant learning in AD mice, suggesting possible VTA DA neuron dysregulation.
View Article and Find Full Text PDFAlzheimer's disease (AD) patients exhibit neuropsychiatric symptoms that extend beyond classical cognitive deficits, suggesting involvement of subcortical areas. Here, we investigated the role of midbrain dopamine (DA) neurons in AD using the amyloid + tau-driven 3xTg-AD mouse model. We found deficits in reward-based operant learning in AD mice, suggesting possible VTA DA neuron dysregulation.
View Article and Find Full Text PDFBones do not normally have lymphatics. However, individuals with generalized lymphatic anomaly (GLA) or Gorham-Stout disease (GSD) develop ectopic lymphatics in bone. Despite growing interest in the development of tissue-specific lymphatics, the cellular origin of bone lymphatic endothelial cells (bLECs) is not known and the development of bone lymphatics has not been fully characterized.
View Article and Find Full Text PDFBone regeneration of large cranial defects, potentially including traumatic brain injury (TBI) treatment, presents a major problem with non-crosslinking, clinically available products due to material migration outside the defect. Commercial products such as bone cements are permanent and thus not conducive to bone regeneration, and typical commercial bioactive materials for bone regeneration do not crosslink. Our previous work demonstrated that non-crosslinking materials may be prone to material migration following surgical placement, and the current study attempted to address these problems by introducing a new hydrogel system where tissue particles are themselves the crosslinker.
View Article and Find Full Text PDFExtracellular matrix (ECM)-derived implants hold great promise for tissue repair, but new strategies are required to produce efficiently decellularized scaffolds with the necessary porosity and mechanical properties to facilitate regeneration. In this study, we demonstrate that it is possible to produce highly porous, elastic, articular cartilage (AC) ECM-derived scaffolds that are efficiently decellularized, nonimmunogenic, and chondro-permissive. Pepsin solubilized porcine AC was cross-linked with glyoxal, lyophilized and then subjected to dehydrothermal treatment.
View Article and Find Full Text PDF