Publications by authors named "Nina Aro"

Unlabelled: Hydrothermal pretreatments are commonly employed prior to the biotechnological conversion of lignocellulosic biomass (LCB) into value-added products, such as fuels and chemicals. However, the by-products of this pretreatment, including furaldehydes, lignin-derived phenolics, and carboxylic acids, can inhibit the enzymes and microbes used in the biotechnological process. In this study, LCB degrading enzymes of endophytic and litter fungi were screened for their tolerance to potential pretreatment-derived inhibitors.

View Article and Find Full Text PDF

Background: Trichoderma reesei is known for its ability to produce large amounts of extracellular proteins and is one of the most important industrially used filamentous fungus. Xylanase regulator 1 (XYR1) is the master regulator responsible for the activation of cellulase and hemicellulase gene expression under inducing conditions. It has been reported that strains with point mutations in certain areas of xyr1 bypass the need for inducing carbon source, allowing high (hemi)cellulase production even in the presence of glucose.

View Article and Find Full Text PDF

Background: Enzyme-aided valorization of lignocellulose represents a green and sustainable alternative to the traditional chemical industry. The recently discovered lytic polysaccharide monooxygenases (LPMOs) are important components of the state-of-the art enzyme cocktails for cellulose conversion. Yet, these monocopper enzymes are poorly characterized in terms of their kinetics, as exemplified by the growing evidence for that HO may be a more efficient co-substrate for LPMOs than O.

View Article and Find Full Text PDF
Article Synopsis
  • The Sec1/Munc18 (SM) proteins play a crucial role in the fusion of membranes through their interaction with SNARE proteins, with a newly identified interaction site called the groove being significant for this function.
  • A mutant strain of yeast (sec1(w24)) that lacks a functional groove exhibited temperature-sensitive growth and defects in secretion, highlighting the groove's importance in cellular processes.
  • The study found that the groove is essential for the proper formation of SNARE complexes, with SRO7 acting as a compensatory factor for the mutant and together they influence the assembly of these complexes necessary for membrane fusion.
View Article and Find Full Text PDF

Background: Extracellular pH is one of the several environmental factors affecting protein production by filamentous fungi. Regulatory mechanisms ensure that extracellular enzymes are produced under pH-conditions in which the enzymes are active. In filamentous fungi, the transcriptional regulation in different ambient pH has been studied especially in Aspergilli, whereas the effects of pH in the industrial producer of hydrolytic enzymes, Trichoderma reesei, have mainly been studied at the protein level.

View Article and Find Full Text PDF

Background: The soft rot ascomycetal fungus Trichoderma reesei is utilized for industrial production of secreted enzymes, especially lignocellulose degrading enzymes. T. reesei uses several different enzymes for the degradation of plant cell wall-derived material, including 9 characterized cellulases, 15 characterized hemicellulases and at least 42 genes predicted to encode cellulolytic or hemicellulolytic activities.

View Article and Find Full Text PDF

Sec1/Munc18 family proteins are important components of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex-mediated membrane fusion processes. However, the molecular interactions and the mechanisms involved in Sec1p/Munc18 control and SNARE complex assembly are not well understood. We provide evidence that Mso1p, a Sec1p- and Sec4p-binding protein, interacts with membranes to regulate membrane fusion.

View Article and Find Full Text PDF

Background: Trichoderma reesei is a soft rot Ascomycota fungus utilised for industrial production of secreted enzymes, especially lignocellulose degrading enzymes. About 30 carbohydrate active enzymes (CAZymes) of T. reesei have been biochemically characterised.

View Article and Find Full Text PDF

The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658-724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation.

View Article and Find Full Text PDF

Ace2 (Activator of Cellulases 2)-encoding gene was deleted from and retransformed in the H. jecorinaQM9414 genome. Comparison of xylanase activity and xyn2 transcription of the corresponding strains after cultivation on inducing compounds (xylan, xylobiose) revealed a faster initial inducibility in the Deltaace2-strain, but final levels of xyn2 transcript and xylanase activity of the parental strain could not be reached.

View Article and Find Full Text PDF

Two major xylanases (XYN I and XYN II) of the filamentous fungus Hypocrea jecorina (Trichoderma reesei) are simultaneously expressed during growth on xylan but respond differently to low-molecular-weight inducers. In vivo footprinting analysis of the xylanase1 (xyn1) promoter revealed three different nucleotide sequences (5'-GGCTAAATGCGACATCTTAGCC-3' [an inverted repeat of GGCTAA spaced by 10 bp], 5'-CCAAT-3', and 5'-GGGGTCTAGACCCC-3' [equivalent to a double Cre1 site]) used to bind proteins. Binding to the Cre1 site is only observed under repressed conditions, whereas binding to the two other motifs is constitutive.

View Article and Find Full Text PDF

Plant cell wall consists mainly of the large biopolymers cellulose, hemicellulose, lignin and pectin. These biopolymers are degraded by many microorganisms, in particular filamentous fungi, with the aid of extracellular enzymes. Filamentous fungi have a key role in degradation of the most abundant biopolymers found in nature, cellulose and hemicelluloses, and therefore are essential for the maintenance of the global carbon cycle.

View Article and Find Full Text PDF

The gene encoding a thermostable beta-glucosidase (cel3a) was isolated from the thermophilic fungus Talalaromyces emersonii by degenerate PCR and expressed in the filamentous fungus Trichoderma reesei. The cel3a gene encodes an 857 amino acid long protein with a calculated molecular weight of 90.59 kDa.

View Article and Find Full Text PDF

The main manganese peroxidase (MnP) isoenzyme of Agaricus bisporus ATCC 62459 produced in lignocellulose-containing cultures was isolated, cloned and sequenced. In liquid medium, where MnP was previously detected only in trace amounts, the production of MnP was enhanced by rye and wheat bran supplements. The pI (3.

View Article and Find Full Text PDF

We characterized the effect of deletion of the Trichoderma reesei (Hypocrea jecorina) ace1 gene encoding the novel cellulase regulator ACEI that was isolated based on its ability to bind to and activate in vivo in Saccharomyces cerevisiae the promoter of the main cellulase gene, cbh1. Deletion of ace1 resulted in an increase in the expression of all the main cellulase genes and two xylanase genes in sophorose- and cellulose-induced cultures, indicating that ACEI acts as a repressor of cellulase and xylanase expression. Growth of the strain with a deletion of the ace1 gene on different carbon sources was analyzed.

View Article and Find Full Text PDF