Publications by authors named "Nina Alperovich"

Although many protocols have been previously developed for genomic DNA (gDNA) extraction from S. cerevisiae, to take advantage of recent advances in laboratory automation and DNA-barcode sequencing, there is a need for automated methods that can provide high-quality gDNA at high efficiency. Here, we describe and demonstrate a fully automated protocol that includes five basic steps: cell wall and RNA digestion, cell lysis, DNA binding to magnetic beads, washing with ethanol, and elution.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the growing need for precise engineering of biological functions in synthetic biology, especially for programmed sensing that regulates gene expression based on stimuli.
  • It introduces two innovative methods, in silico selection and machine-learning-enabled forward engineering, that leverage a comprehensive dataset to develop genetic sensors with specifically defined dose-response characteristics.
  • The methods demonstrate the capability to fine-tune genetic sensors for various performance metrics, such as sensitivity and output, and to predictively engineer new sensor mutations beyond the existing dataset.
View Article and Find Full Text PDF

DNA templates for protein production remain an unexplored source of variability in the performance of cell-free expression (CFE) systems. To characterize this variability, we investigated the effects of two common DNA extraction methodologies, a postprocessing step and manual versus automated preparation on protein production using CFE. We assess the concentration of the DNA template, the quality of the DNA template in terms of physical damage and the quality of the DNA solution in terms of purity resulting from eight DNA preparation workflows.

View Article and Find Full Text PDF

Plate readers are commonly used to measure cell growth and fluorescence, yet the utility and reproducibility of plate reader data is limited by the fact that it is typically reported in arbitrary or relative units. We have previously established a robust serial dilution protocol for calibration of plate reader measurements of absorbance to estimated bacterial cell count and for green fluorescence from proteins expressed in bacterial cells to molecules of equivalent fluorescein. We now extend these protocols to calibration of red fluorescence to the sulforhodamine-101 fluorescent dye and blue fluorescence to Cascade Blue.

View Article and Find Full Text PDF

Performance variability is a common challenge in cell-free protein production and hinders a wider adoption of these systems for both research and biomanufacturing. While the inherent stochasticity and complexity of biology likely contributes to variability, other systematic factors may also play a role, including the source and preparation of the cell extract, the composition of the supplemental reaction buffer, the facility at which experiments are conducted, and the human operator (Cole et al. ACS Synth Biol 8:2080-2091, 2019).

View Article and Find Full Text PDF

Single-cell and single-transcript measurement methods have elevated our ability to understand and engineer biological systems. However, defining and comparing performance between methods remains a challenge, in part due to the confounding effects of experimental variability. Here, we propose a generalizable framework for performing multiple methods in parallel using split samples, so that experimental variability is shared between methods.

View Article and Find Full Text PDF

Allostery is a fundamental biophysical mechanism that underlies cellular sensing, signaling, and metabolism. Yet a quantitative understanding of allosteric genotype-phenotype relationships remains elusive. Here, we report the large-scale measurement of the genotype-phenotype landscape for an allosteric protein: the lac repressor from Escherichia coli, LacI.

View Article and Find Full Text PDF

Accurate measurements of promoter activities are crucial for predictably building genetic systems. Here we report a method to simultaneously count plasmid DNA, RNA transcripts, and protein expression in single living bacteria. From these data, the activity of a promoter in units of RNAP/s can be inferred.

View Article and Find Full Text PDF
Article Synopsis
  • Current methods for genetic engineering of cytomegalovirus (CMV) are inefficient, leading to mutations and difficulties in manipulating multiple genome locations simultaneously due to the use of bacterial artificial chromosomes (BACs).
  • The researchers adapted synthetic biology tools to clone the entire CMV genome by using transformation-associated recombination (TAR), successfully reconstituting the parental strain from overlapping fragments in yeast.
  • This new strategy not only allows for more efficient genome manipulation of CMV but also facilitates the creation of viral genomes derived from synthetic DNA, improving the experimental capabilities in studying large DNA viruses.
View Article and Find Full Text PDF

Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome.

View Article and Find Full Text PDF

Toward achieving rapid and large scale genome modification directly in a target organism, we have developed a new genome engineering strategy that uses a combination of bioinformatics aided design, large synthetic DNA and site-specific recombinases. Using Cre recombinase we swapped a target 126-kb segment of the Escherichia coli genome with a 72-kb synthetic DNA cassette, thereby effectively eliminating over 54 kb of genomic DNA from three non-contiguous regions in a single recombination event. We observed complete replacement of the native sequence with the modified synthetic sequence through the action of the Cre recombinase and no competition from homologous recombination.

View Article and Find Full Text PDF

During the 2009 H1N1 influenza pandemic, vaccines for the virus became available in large quantities only after human infections peaked. To accelerate vaccine availability for future pandemics, we developed a synthetic approach that very rapidly generated vaccine viruses from sequence data. Beginning with hemagglutinin (HA) and neuraminidase (NA) gene sequences, we combined an enzymatic, cell-free gene assembly technique with enzymatic error correction to allow rapid, accurate gene synthesis.

View Article and Find Full Text PDF

Most microbes have not been cultured, and many of those that are cultivatable are difficult, dangerous or expensive to propagate or are genetically intractable. Routine cloning of large genome fractions or whole genomes from these organisms would significantly enhance their discovery and genetic and functional characterization. Here we report the cloning of whole bacterial genomes in the yeast Saccharomyces cerevisiae as single-DNA molecules.

View Article and Find Full Text PDF

We recently reported the chemical synthesis, assembly, and cloning of a bacterial genome in yeast. To produce a synthetic cell, the genome must be transferred from yeast to a receptive cytoplasm. Here we describe methods to accomplish this.

View Article and Find Full Text PDF

As a step toward propagation of synthetic genomes, we completely replaced the genome of a bacterial cell with one from another species by transplanting a whole genome as naked DNA. Intact genomic DNA from Mycoplasma mycoides large colony (LC), virtually free of protein, was transplanted into Mycoplasma capricolum cells by polyethylene glycol-mediated transformation. Cells selected for tetracycline resistance, carried by the M.

View Article and Find Full Text PDF

Mycoplasma genitalium has the smallest genome of any organism that can be grown in pure culture. It has a minimal metabolism and little genomic redundancy. Consequently, its genome is expected to be a close approximation to the minimal set of genes needed to sustain bacterial life.

View Article and Find Full Text PDF