Background: Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed.
Methodology/principal Findings: We characterized the genes generally involved in human advanced atherosclerotic (AHA type V-VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6) using genome-wide expression array and QRT-PCR.
Background And Aims: The expression of disintegrin and metalloprotease ADAM-9, ADAM-15, and ADAM-17 has been associated with cell-cell, cell-platelet, and cell-matrix interactions and inflammation. They are possibly implicated in the pathophysiology of atherosclerosis.
Methods And Results: Whole-genome expression array and quantitative real-time polymerase chain reaction (PCR) analysis confirmed that ADAM-9, ADAM-15, and ADAM-17 are upregulated in advanced human atherosclerotic lesions in samples from carotid, aortic, and femoral territories compared to samples from internal thoracic artery (ITA) free of atherosclerotic plaques.
Objective: To examine the potential moderating role of DRD2 polymorphism (rs1800497) in the association between stressful life events and depressive symptoms among young adults. Although stressful life events, such as divorce, unemployment, and serious illness in the family, are generally associated with negative health outcomes, including depressive symptoms, there are large individual differences in coping with such events. A number of studies suggest that variants in dopamine receptor genes, such as DRD2, are associated with depression but it is unclear if such variants also modify the association between life events and depression.
View Article and Find Full Text PDFBackground: Since genetic alterations influencing susceptibility to multiple sclerosis (MS), the most common autoimmune demyelinating disease of the central nervous system (CNS), are as yet poorly understood, the purpose of this study was to identify genes responsible for MS by studying monozygotic (MZ) twin pairs discordant for MS.
Methods: In order to identify genes involved in MS development, the gene expression profiles in blood mononuclear cells obtained from eight MZ twin pairs discordant for MS were analyzed by cDNA microarray technology detecting the expression of 8 300 genes. The twins were collected from the Finnish Twin Cohort Study and both affected subjects and their healthy siblings underwent neurological evaluation and cerebral and spinal magnetic resonance imaging.
Acute relapses of multiple sclerosis (MS) are treated with intravenous methylprednisolone (IVMP), which speeds recovery from exacerbation. It is known that IVMP suppresses the immunological activation which occurs during an acute attack of MS. However, the specific target genes affected by this therapy remain obscure.
View Article and Find Full Text PDF