Control of materials properties has been the driving force of modern technologies. So far, materials properties have been modulated by their composition, structure, and size. Here, by using cathodoluminescence in a scanning transmission electron microscope, we show that the optical properties of stacked, >100 nm thick hexagonal boron nitride (hBN) films can be continuously tuned by their relative twist angles.
View Article and Find Full Text PDFEffective spin couplings and spin fluctuation induced quantum corrections to sublattice magnetization are obtained in the [Formula: see text] AF state of a realistic three-orbital interacting electron model involving xz, yz and xy Fe 3d orbitals, providing insight into the multi-orbital quantum antiferromagnetism in iron pnictides. The xy orbital is found to be mainly responsible for the generation of strong ferromagnetic spin coupling in the b direction, which is critically important to fully account for the spin wave dispersion as measured in inelastic neutron scattering experiments. The ferromagnetic spin coupling is strongly suppressed as the xy band approaches half filling, and is ascribed to particle-hole exchange in the partially filled xy band.
View Article and Find Full Text PDFSpin wave excitations and the stability of the (0, π) ordered spin density wave (SDW) state are investigated within the minimal two-band model for iron pnictides including a Hund's coupling term. The SDW state is shown to be stable in two distinct doping regimes-for finite hole doping in the lower SDW band for small second-neighbour hoppings, and for low electron doping in the upper SDW band for comparable first-neighbour and second-neighbour hoppings. In both cases, Hund's coupling strongly stabilizes the SDW state due to the generation of additional ferromagnetic spin couplings involving the inter-orbital part of the particle-hole propagator.
View Article and Find Full Text PDFSpin waves in the (0, π) and (0, π, π) ordered spin-density-wave (SDW) states of the t-t' Hubbard model are investigated at finite doping. In the presence of small t', these composite ferro-antiferromagnetic (F-AF) states are found to be strongly stabilized at finite hole doping due to enhanced carrier-induced ferromagnetic spin couplings as in metallic ferromagnets. Anisotropic spin-wave velocities, a spin-wave energy scale of around 200 meV, reduced magnetic moment and rapid suppression of magnetic order with electron doping x (corresponding to F substitution of O atoms in LaO(1 - x)F(x)FeAs or Ni substitution of Fe atoms in BaFe(2 - x)Ni(x)As(2)) obtained in this model are in agreement with observed magnetic properties of doped iron pnictides.
View Article and Find Full Text PDF