The tympanic membrane (TM) is one of the most common routes to access the middle ear and inner ear for the treatment of hearing and balance pathologies. Since the TM is a soft thin biological tissue with small dimensions, using needles seems to be among the most practical interventional approaches. In this study, we proposed a finite-element (FE) analysis of needle-TM interactions that combines a 3D model of the TM and other main middle-ear structures in gerbil, and a 2D model of needle insertion into the TM based on the cohesive zone method (CZM).
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
October 2024
The perforation characteristics and fracture-related mechanical properties of the tympanic membrane (TM) greatly affect surgical procedures like myringotomy and tympanostomy performed on the middle ear. We analyzed the most important features of the gerbil TM perforation using an experimental approach that was based on force measurement during a 2-cycle needle insertion/extraction process. Fracture energy, friction energy, strain energy, and hysteresis loss were taken into consideration for the analysis of the different stages of needle insertion and extraction.
View Article and Find Full Text PDFThe dynamics of circulating tumor cells (CTCs) within blood vessels play a pivotal role in predicting metastatic spreading of cancer within the body. However, the limited understanding and method to quantitatively investigate the influence of vascular architecture on CTC dynamics hinders our ability to predict metastatic process effectively. To address this limitation, the present study was conducted to investigate the influence of blood vessel tortuosity on the behaviour of CTCs, focusing specifically on establishing methods and examining the role of shear stress in CTC-vessel wall interactions and its subsequent impact on metastasis.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
June 2024
Purpose: Several treatment methods for hearing disorders rely on attaching medical devices to the tympanic membrane. This study aims to systematically analyze the effects of the material and geometrical properties and location of the medical devices attached to the tympanic membrane on middle-ear vibrations.
Methods: A finite-element model of the human middle ear was employed to simulate the effects of attachment of medical devices.
J Mech Behav Biomed Mater
May 2024
This study aims to introduce a novel non-invasive method for rapid material characterization of middle-ear structures, taking into consideration the invaluable insights provided by the mechanical properties of ear tissues. Valuable insights into various ear pathologies can be gleaned from the mechanical properties of ear tissues, yet conventional techniques for assessing these properties often entail invasive procedures that preclude their use on living patients. In this study, in the first step, we developed machine-learning models of the middle ear to predict its responses with a significantly lower computational cost in comparison to finite-element models.
View Article and Find Full Text PDFDuring the multistep process of metastasis, cancer cells encounter various mechanical forces which make them deform drastically. Developing accurate in-silico models, capable of simulating the interactions between the mechanical forces and highly deformable cancer cells, can pave the way for the development of novel diagnostic and predictive methods for metastatic progression. Spring-network models of cancer cell, empowered by our recently proposed identification approach, promises a versatile numerical tool for developing experimentally validated models that can simulate complex interactions at cellular scale.
View Article and Find Full Text PDFBiomech Model Mechanobiol
June 2024
An excessive von Willebrand factor (VWF) secretion, coupled with a moderate to severe deficiency of ADAMTS13 activity, serves as a linking mechanism between inflammation to thrombosis. The former facilitates platelet adhesion to the vessel wall and the latter is required to cleave VWF multimers. As a result, the ultra-large VWF (UL-VWF) multimers released by Weibel-Palade bodies remain uncleaved.
View Article and Find Full Text PDFBackground: Despite the demonstrated benefits of transcatheter aortic valve replacement (TAVR), subclinical leaflet thrombosis and hypoattenuated leaflet thickening are commonly seen as initial indications of decreased valve durability and augmented risk of transient ischemic attack.
Methods: We developed a multiscale patient-specific computational framework to quantify metrics of global circulatory function, metrics of global cardiac function, and local cardiac fluid dynamics of the aortic root and coronary arteries.
Results: Based on our findings, TAVR might be associated with a high risk of blood stagnation in the neo-sinus region due to the lack of sufficient blood flow washout during the diastole phase (e.
In the last decades, finite-element models of the middle ear have been widely used to predict the middle-ear vibration outputs. Even with the simplest linear assumption for material properties of the structures in the middle ear, these models need tens of parameters. Due to the complexities of measurements of material properties of these structures, accurate estimations of the values of most of these parameters are not possible.
View Article and Find Full Text PDFIn recent years, transcatheter aortic valve replacement (TAVR) has become the leading method for treating aortic stenosis. While the procedure has improved dramatically in the past decade, there are still uncertainties about the impact of TAVR on coronary blood flow. Recent research has indicated that negative coronary events after TAVR may be partially driven by impaired coronary blood flow dynamics.
View Article and Find Full Text PDFBackground Despite the proven benefits of transcatheter aortic valve replacement (TAVR) and its recent expansion toward the whole risk spectrum, coronary artery disease is present in more than half of the candidates for TAVR. Many previous studies do not focus on the longer-term impact of TAVR on coronary arteries, and hemodynamic changes to the circulatory system in response to the anatomical changes caused by TAVR are not fully understood. Methods and Results We developed a multiscale patient-specific computational framework to examine the effect of TAVR on coronary and cardiac hemodynamics noninvasively.
View Article and Find Full Text PDFGiven the associated risks with transcatheter aortic valve replacement (TAVR), it is crucial to determine how the implant will affect the valve dynamics and cardiac function, and if TAVR will improve or worsen the outcome of the patient. Effective treatment strategies, indeed, rely heavily on the complete understanding of the valve dynamics. We developed an innovative Doppler-exclusive non-invasive computational framework that can function as a diagnostic tool to assess valve dynamics in patients with aortic stenosis in both pre- and post-TAVR status.
View Article and Find Full Text PDFFor over 40 years, finite-element models of the mechanics of the middle ear have been mostly deterministic in nature. Deterministic models do not take into account the effects of inter-individual variabilities on middle-ear parameters. We present a stochastic finite-element model of the human middle ear that uses variability in the model parameters to investigate the uncertainty in the model outputs (umbo, stapes, and tympanic-membrane displacements).
View Article and Find Full Text PDFMedical needles have shown an appreciable contribution to the development of novel medical devices and surgical technologies. A better understanding of needle-skin interactions can advance the design of medical needles, modern surgical robots, and haptic devices. This study employed finite element (FE) modelling to explore the effect of different mechanical and geometrical parameters on the needle's force-displacement relationship, the required force for the skin puncture, and generated mechanical stress around the cutting zone.
View Article and Find Full Text PDFUnderstanding and predicting metastatic progression and developing novel diagnostic methods can highly benefit from accurate models of the deformability of cancer cells. Spring-based network models of cells can provide a versatile way of integrating deforming cancer cells with other physical and biochemical phenomena, but these models have parameters that need to be accurately identified. In this study we established a systematic method for identifying parameters of spring-network models of cancer cells.
View Article and Find Full Text PDFWe propose a novel material characterization method to estimate the Young's modulus of thin 2-D structures using non-modal noisy single frequency harmonic vibration data measured with holography. The method uses finite-difference discretization to apply the plate equation to all measured pixels inside the boundary of the vibrating structure and then treats the problem as a Bayesian optimization process to find the value of the Young's modulus by minimizing the Euclidian distance between the measured displacement field and repeatedly calculated displacement field using the plate equation. In order to assess the accuracy of the method, ground truth harmonic displacement magnitude fields of different plates were obtained using analytical solutions and the finite-element method and were used to estimate the Young's moduli.
View Article and Find Full Text PDFRecent studies have suggested that platelets have a crucial role in enhancing the survival of circulating tumor cells in the bloodstream and aggravating cancer metastasis. The main function of platelets is to bind to the sites of the damaged vessels to stop bleeding. However, in cancer patients, activated platelets adhere to circulating tumor cells and exacerbate metastatic spreading.
View Article and Find Full Text PDFTo improve the understanding of the middle-ear hearing mechanism and assist in the diagnosis of middle-ear diseases, we are developing a high-speed digital holographic (HDH) system to measure the shape and acoustically-induced transient displacements of the tympanic membrane (TM). In this paper, we performed measurements on cadaveric human ears with simulated common middle-ear pathologies. The frequency response function (FRF) of the normalized displacement by the stimulus (sound pressure) at each measured pixel point of the entire TM surface was calculated and the complex modal indicator function (CMIF) of the middle-ear system based on FRFs of the entire TM surface motions was used to differentiate different middle-ear pathologies.
View Article and Find Full Text PDFCharacterization of Tympanic Membrane (TM) surface motions with forward and reverse stimulation is important to understanding how the TM transduces acoustical and mechanical energy in both directions. In this paper, stroboscopic opto-electronic holography is used to quantify motions of the entire TM surface induced by forward sound and reverse mechanical stimulation in human cadaveric ears from 0.25 to 18.
View Article and Find Full Text PDFThe anatomical differences between the newborn ear and the adult one result in different input admittance responses in newborns than those in adults. Taking into account fluid-structure interactions, we have developed a finite-element model to investigate the wideband admittance responses of the ear canal and middle ear in newborns for frequencies up to 10 kHz. We have also performed admittance measurements on a group of 23 infants with ages between 14 and 28 days, for frequencies from 250 to 8000 Hz with 1/12-octave resolution.
View Article and Find Full Text PDFAdmittance measurement is a promising tool for evaluating the status of the middle ear in newborns. However, the newborn ear is anatomically very different from the adult one, and the acoustic input admittance is different than in adults. To aid in understanding the differences, a finite-element model of the newborn ear canal and middle ear was developed and its behaviour was studied for frequencies up to 2000 Hz.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
October 2015
We present a finite-element model of the gerbil middle ear that, using a set of baseline parameters based primarily on a priori estimates from the literature, generates responses that are comparable with responses we measured in vivo using multi-point vibrometry and with those measured by other groups. We investigated the similarity of numerous features (umbo, pars-flaccida and pars-tensa displacement magnitudes, the resonance frequency and break-up frequency, etc.) in the experimental responses with corresponding ones in the model responses, as opposed to simply computing frequency-by-frequency differences between experimental and model responses.
View Article and Find Full Text PDFAortic stenosis (AS), in which the opening of the aortic valve is narrowed, is the most common valvular heart disease. Cardiac catheterization is considered the reference standard for definitive evaluation of AS severity, based on instantaneous systolic value of transvalvular pressure gradient (TPG). However, using invasive cardiac catheterization might carry high risks knowing that undergoing multiple cardiac catheterizations for follow-up in patients with AS is common.
View Article and Find Full Text PDF