Background: Approximately 33% of the patients with lumbar spinal stenosis (LSS) who undergo surgery are not satisfied with their postoperative clinical outcomes. Therefore, identifying predictors for postoperative outcome and groups of patients who will benefit from the surgical intervention is of significant clinical benefit. However, many of the studied predictors to date suffer from subjective recall bias, lack fine digital measures, and yield poor correlation to outcomes.
View Article and Find Full Text PDFLumbar spinal stenosis (LSS) is a condition associated with the degeneration of spinal disks in the lower back. A significant majority of the elderly population experiences LSS, and the number is expected to grow. The primary objective of medical treatment for LSS patients has focused on improving functional outcomes (e.
View Article and Find Full Text PDFThis study introduces the use of multivariate linear regression (MLR) and support vector regression (SVR) models to predict postoperative outcomes in a cohort of patients who underwent surgery for cervical spondylotic myelopathy (CSM). Currently, predicting outcomes after surgery for CSM remains a challenge. We recruited patients who had a diagnosis of CSM and required decompressive surgery with or without fusion.
View Article and Find Full Text PDF