Publications by authors named "Nima Bigdely-Shamlo"

Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain considerable variation in the ways that the recommended methods are applied. An open question for researchers is how sensitive the results of EEG analyses are to variations in preprocessing methods and parameters. To address this issue, we analyze the effect of preprocessing methods on downstream EEG analysis using several simple signal and event-related measures.

View Article and Find Full Text PDF

Significant achievements have been made in the fMRI field by pooling statistical results from multiple studies (meta-analysis). More recently, fMRI standardization efforts have focused on enabling the joint analysis of raw fMRI data across studies (mega-analysis), with the hope of achieving more detailed insights. However, it has not been clear if such analyses in the EEG field are possible or equally fruitful.

View Article and Find Full Text PDF

We present the results of a large-scale analysis of event-related responses based on raw EEG data from 17 studies performed at six experimental sites associated with four different institutions. The analysis corpus represents 1,155 recordings containing approximately 7.8 million event instances acquired under several different experimental paradigms.

View Article and Find Full Text PDF

A growing number of studies use the combination of eye-tracking and electroencephalographic (EEG) measures to explore the neural processes that underlie visual perception. In these studies, fixation-related potentials (FRPs) are commonly used to quantify early and late stages of visual processing that follow the onset of each fixation. However, FRPs reflect a mixture of bottom-up (sensory-driven) and top-down (goal-directed) processes, in addition to eye movement artifacts and unrelated neural activity.

View Article and Find Full Text PDF

Electroencephalography (EEG) offers a platform for studying the relationships between behavioral measures, such as blink rate and duration, with neural correlates of fatigue and attention, such as theta and alpha band power. Further, the existence of EEG studies covering a variety of subjects and tasks provides opportunities for the community to better characterize variability of these measures across tasks and subjects. We have implemented an automated pipeline (BLINKER) for extracting ocular indices such as blink rate, blink duration, and blink velocity-amplitude ratios from EEG channels, EOG channels, and/or independent components (ICs).

View Article and Find Full Text PDF

Real-world brain imaging by EEG requires accurate annotation of complex subject-environment interactions in event-rich tasks and paradigms. This paper describes the evolution of the Hierarchical Event Descriptor (HED) system for systematically describing both laboratory and real-world events. HED version 2, first described here, provides the semantic capability of describing a variety of subject and environmental states.

View Article and Find Full Text PDF

Independent component analysis (ICA) is a class of algorithms widely applied to separate sources in EEG data. Most ICA approaches use optimization criteria derived from temporal statistical independence and are invariant with respect to the actual ordering of individual observations. We propose a method of mapping real signals into a complex vector space that takes into account the temporal order of signals and enforces certain mixing stationarity constraints.

View Article and Find Full Text PDF

Large-scale analysis of EEG and other physiological measures promises new insights into brain processes and more accurate and robust brain-computer interface models. However, the absence of standardized vocabularies for annotating events in a machine understandable manner, the welter of collection-specific data organizations, the difficulty in moving data across processing platforms, and the unavailability of agreed-upon standards for preprocessing have prevented large-scale analyses of EEG. Here we describe a "containerized" approach and freely available tools we have developed to facilitate the process of annotating, packaging, and preprocessing EEG data collections to enable data sharing, archiving, large-scale machine learning/data mining and (meta-)analysis.

View Article and Find Full Text PDF

The technology to collect brain imaging and physiological measures has become portable and ubiquitous, opening the possibility of large-scale analysis of real-world human imaging. By its nature, such data is large and complex, making automated processing essential. This paper shows how lack of attention to the very early stages of an EEG preprocessing pipeline can reduce the signal-to-noise ratio and introduce unwanted artifacts into the data, particularly for computations done in single precision.

View Article and Find Full Text PDF

We suggest a solution to the following problem: "Given multichannel linear source mixture data Y, and an overcomplete dictionary, A, of source projections, ai, how can we construct a complete basis, A0, by selecting columns from A such that the sources X = A0(-1)Y are as statistically independent as possible from each other?". While conventional independent component analysis (ICA) methods learn the mixing matrix A0 from scratch given Y, we restrict ourselves to selecting basis vectors from a known overcomplete dictionary. We develop two methods based on modifications of the maximum likelihood equivalent of the Infomax approach and the reconstruction-ICA (RICA) algorithm.

View Article and Find Full Text PDF

A new paradigm for human brain imaging, mobile brain/body imaging (MoBI), involves synchronous collection of human brain activity (via electroencephalography, EEG) and behavior (via body motion capture, eye tracking, etc.), plus environmental events (scene and event recording) to study joint brain/body dynamics supporting natural human cognition supporting performance of naturally motivated human actions and interactions in 3-D environments (Makeig et al., 2009).

View Article and Find Full Text PDF

Independent component analysis (ICA) can find distinct sources of electroencephalographic (EEG) activity, both brain-based and artifactual, and has become a common pre-preprocessing step in analysis of EEG data. Distinction between brain and non-brain independent components (ICs) accounting for, e.g.

View Article and Find Full Text PDF

The traditional method of estimating an Event Related Potential (ERP) is to take the average of signal epochs time locked to a set of similar experimental events. This averaging method is useful as long as the experimental procedure can sufficiently isolate the brain or non-brain process of interest. However, if responses from multiple cognitive processes, time locked to multiple classes of closely spaced events, overlap in time with varying inter-event intervals, averaging will most likely fail to identify the individual response time courses.

View Article and Find Full Text PDF

A crucial question for the analysis of multi-subject and/or multi-session electroencephalographic (EEG) data is how to combine information across multiple recordings from different subjects and/or sessions, each associated with its own set of source processes and scalp projections. Here we introduce a novel statistical method for characterizing the spatial consistency of EEG dynamics across a set of data records. Measure Projection Analysis (MPA) first finds voxels in a common template brain space at which a given dynamic measure is consistent across nearby source locations, then computes local-mean EEG measure values for this voxel subspace using a statistical model of source localization error and between-subject anatomical variation.

View Article and Find Full Text PDF

Unlabelled: This paper considers the problem of automatic characterization and detection of target images in a rapid serial visual presentation (RSVP) task based on EEG data. A novel method that aims to identify single-trial event-related potentials (ERPs) in time-frequency is proposed, and a robust classifier with feature clustering is developed to better utilize the correlated ERP features. The method is applied to EEG recordings of a RSVP experiment with multiple sessions and subjects.

View Article and Find Full Text PDF

We describe a set of complementary EEG data collection and processing tools recently developed at the Swartz Center for Computational Neuroscience (SCCN) that connect to and extend the EEGLAB software environment, a freely available and readily extensible processing environment running under Matlab. The new tools include (1) a new and flexible EEGLAB STUDY design facility for framing and performing statistical analyses on data from multiple subjects; (2) a neuroelectromagnetic forward head modeling toolbox (NFT) for building realistic electrical head models from available data; (3) a source information flow toolbox (SIFT) for modeling ongoing or event-related effective connectivity between cortical areas; (4) a BCILAB toolbox for building online brain-computer interface (BCI) models from available data, and (5) an experimental real-time interactive control and analysis (ERICA) environment for real-time production and coordination of interactive, multimodal experiments.

View Article and Find Full Text PDF

Human cognition has been shaped both by our body structure and by its complex interactions with its environment. Our cognition is thus inextricably linked to our own and others' motor behavior. To model brain activity associated with natural cognition, we propose recording the concurrent brain dynamics and body movements of human subjects performing normal actions.

View Article and Find Full Text PDF

Time series motifs are sets of very similar subsequences of a long time series. They are of interest in their own right, and are also used as inputs in several higher-level data mining algorithms including classification, clustering, rule-discovery and summarization. In spite of extensive research in recent years, finding time series motifs in massive databases is an open problem.

View Article and Find Full Text PDF

We report the design and performance of a brain-computer interface (BCI) system for real-time single-trial binary classification of viewed images based on participant-specific dynamic brain response signatures in high-density (128-channel) electroencephalographic (EEG) data acquired during a rapid serial visual presentation (RSVP) task. Image clips were selected from a broad area image and presented in rapid succession (12/s) in 4.1-s bursts.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionaa8om89j0taugtiuhqh2li0fgij545vh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once