With immuno-oncology becoming the standard of care for a variety of cancers, identifying biomarkers that reliably classify patient response, resistance, or toxicity becomes the next critical barrier towards improving care. Multi-parametric, multi-omics, and computational platforms generating an unprecedented depth of data are poised to usher in the discovery of increasingly robust biomarkers for enhanced patient selection and personalized treatment approaches. Deciding which developing technologies to implement in clinical settings ultimately, applied either alone or in combination, relies on weighing pros and cons, from minimizing patient sampling to maximizing data outputs, and assessing reproducibility and representativeness of findings, while lessening data fragmentation towards harmonization.
View Article and Find Full Text PDFStudy Design: Retrospective analysis.
Objective: To assess perioperative complication rates and readmission rates after ACDF in a patient population of advanced age.
Summary Of Background Data: Readmission rates after ACDF are important markers of surgical quality and, with recent shifts in reimbursement schedules, they are rapidly gaining weight in the determination of surgeon and hospital reimbursement.
Persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have been reported in immune-compromised individuals and people undergoing immune-modulatory treatments. Although intrahost evolution has been documented, direct evidence of subsequent transmission and continued stepwise adaptation is lacking. Here we describe sequential persistent SARS-CoV-2 infections in three individuals that led to the emergence, forward transmission, and continued evolution of a new Omicron sublineage, BA.
View Article and Find Full Text PDFZta, the Epstein-Barr virus bZIP transcription factor (TF), binds both unmethylated and methylated double-stranded DNA (dsDNA) in a sequence-specific manner. We studied the contribution of a conserved asparagine (N182) to sequence-specific dsDNA binding to four types of dsDNA: (i) dsDNA with cytosine in both strands ((DNA(C|C)), (ii, iii) dsDNA with 5-methylcytosine (5mC, ) or 5-hydroxymethylcytosine (5hmC, ) in one strand and cytosine in the second strand ((DNA(5mC|C) and DNA(5hmC|C)), and (iv) dsDNA with methylated cytosine in both strands in all CG dinucleotides ((DNA(5mCG)). We replaced asparagine with five similarly sized amino acids (glutamine (Q), serine (S), threonine (T), isoleucine (I), or valine (V)) and used protein binding microarrays to evaluate sequence-specific dsDNA binding.
View Article and Find Full Text PDFIn mammalian cells, 5-methylcytosine (5mC) occurs in genomic double-stranded DNA (dsDNA) and is enzymatically oxidized to 5-hydroxymethylcytosine (5hmC), then to 5-formylcytosine (5fC), and finally to 5-carboxylcytosine (5caC). These cytosine modifications are enriched in regulatory regions of the genome. The effect of these oxidative products on five bZIP dimers (CREB1, ATF2, Zta, ATF3|cJun, and cFos|cJun) binding to five types of dsDNA was measured using protein binding microarrays.
View Article and Find Full Text PDFSingle-stranded DNA (ssDNA) containing four guanine repeats can form G-quadruplex (G4) structures. While cellular proteins and small molecules can bind G4s, it has been difficult to broadly assess their DNA-binding specificity. Here, we use custom DNA microarrays to examine the binding specificities of proteins, small molecules, and antibodies across ∼15,000 potential G4 structures.
View Article and Find Full Text PDFPreviously, cooperative binding of the bZIP domain of CREB1 and the ETS domain of GABPα was observed for the composite DNA ETS ⇔ CRE motif ( ). Single nucleotide polymorphisms (SNPs) at the beginning and end of the ETS motif () increased cooperative binding. Here, we use an Agilent microarray of 60-mers containing all double nucleotide polymorphisms (DNPs) of the ETS ⇔ CRE motif to explore GABPα and CREB1 binding to their individual motifs and their cooperative binding.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
April 2019
The bZIP homodimers CEBPB and CREB1 bind DNA containing methylated cytosines differently. CREB1 binds stronger to the C/EBP half-site GCAA when the cytosine is methylated. For CEBPB, methylation of the same cytosine does not affect DNA binding.
View Article and Find Full Text PDFZta is a bZIP transcription factor (TF) in the Epstein-Barr virus that binds unmethylated and methylated DNA sequences. Substitution of cysteine 189 of Zta to serine (Zta(C189S)) results in a virus that is unable to execute the lytic cycle, which was attributed to a change in binding to methylated DNA sequences. To learn more about the role of this position in defining sequence-specific DNA binding, we mutated cysteine 189 to four other amino acids, producing Zta(C189S), Zta(C189T), Zta(C189A), and Zta(C189V) mutants.
View Article and Find Full Text PDFThe Epstein-Barr virus (EBV) B-ZIP transcription factor Zta binds to many DNA sequences containing methylated CG dinucleotides. Using protein binding microarrays (PBMs), we analyzed the sequence specific DNA binding of Zta to four kinds of double-stranded DNA (dsDNA): (1) DNA containing cytosine in both strands, (2) DNA with 5-methylcytosine (5mC) in one strand and cytosine in the second strand, (3) DNA with 5-hydroxymethylcytosine (5hmC) in one strand and cytosine in the second strand, and (4) DNA in which both cytosines in all CG dinucleotides contain 5mC. We compared these data to PBM data for three additional B-ZIP proteins (CREB1 and CEBPB homodimers and cJun|cFos heterodimers).
View Article and Find Full Text PDF