Publications by authors named "Nilubon Kurubanjerdjit"

Molecular networks are built up from genetic elements that exhibit feedback interactions. Here, we studied the problem of measuring the similarity of directed networks by proposing a novel alignment-free approach: the network subgraph-based approach. Our approach does not make use of randomized networks to determine modular patterns embedded in a network, and this method differs from the network motif and graphlet methods.

View Article and Find Full Text PDF

Biological processes are based on molecular networks, which exhibit biological functions through interactions of genetic elements or proteins. This study presents a graph-based method to characterize molecular networks by decomposing the networks into directed multigraphs: network subgraphs. Spectral graph theory, reciprocity and complexity measures were used to quantify the network subgraphs.

View Article and Find Full Text PDF

The FoxM1 pathway is an oncogenic signaling pathway involved in essential mechanisms including control cell-cycle progression, apoptosis and cell growth which are the common hallmarks of various cancers. Although its biological functions in the tumor development and progression are known, the mechanism by which it participates in those processes is not understood. The present work reveals images of the oncogenic FoxM1 pathway controlling the cell cycle process with alternative treatment options via phytochemical substances in the lung cancer study.

View Article and Find Full Text PDF

Drug repurposing is a new method for disease treatments, which accelerates the identification of new uses for existing drugs with minimal side effects for patients. MicroRNA-based therapeutics are a class of drugs that have been used in gene therapy following the FDA's approval of the first anti-sense therapy. This study examines the effects of oxLDL on vascular smooth muscle cells (VSMCs) and identifies potential drugs and antimiRs for treating VSMC-associated diseases.

View Article and Find Full Text PDF

In this review, we introduce a new vision of cancer describing opposing effects that control progression. Cancer is a paradigm of opposing of "Yin" and "Yang," with Yin being the effect to promote cancer and Yang that to maintain the normal state. This Yin Yang hypothesis has been used to select Yin and Yang genes to develop multigene signatures for determining prognosis in lung and breast cancer.

View Article and Find Full Text PDF

Epigenetic regulation has been linked to the initiation and progression of cancer. Aberrant expression of microRNAs (miRNAs) is one such mechanism that can activate or silence oncogenes (OCGs) and tumor suppressor genes (TSGs) in cells. A growing number of studies suggest that miRNA expression can be regulated by methylation modification, thus triggering cancer development.

View Article and Find Full Text PDF

Background: Abnormal proliferation of vascular smooth muscle cells (VSMC) is a major cause of cardiovascular diseases (CVDs). Many studies suggest that vascular injury triggers VSMC dedifferentiation, which results in VSMC changes from a contractile to a synthetic phenotype; however, the underlying molecular mechanisms are still unclear.

Methods: In this study, we examined how VSMC responds under mechanical stress by using time-course microarray data.

View Article and Find Full Text PDF

Chromosomal translocation (CT) is of enormous clinical interest because this disorder is associated with various major solid tumors and leukemia. A tumor-specific fusion gene event may occur when a translocation joins two separate genes. Currently, various CT databases provide information about fusion genes and their genomic elements.

View Article and Find Full Text PDF

Background: Molecular networks are the basis of biological processes. Such networks can be decomposed into smaller modules, also known as network motifs. These motifs show interesting dynamical behaviors, in which co-operativity effects between the motif components play a critical role in human diseases.

View Article and Find Full Text PDF

Plants are continuously subjected to infection by pathogens, including bacteria and viruses. Bacteria can inject a variety of effector proteins into the host to reprogram host defense mechanism. It is known that microRNAs participate in plant disease resistance to bacterial pathogens and previous studies have suggested that some bacterial effectors have evolved to disturb the host's microRNA-regulated pathways; and so enabling infection.

View Article and Find Full Text PDF

MicroRNAs are small, endogenous RNAs found in many different species and are known to have an influence on diverse biological phenomena. They also play crucial roles in plant biological processes, such as metabolism, leaf sidedness and flower development. However, the functional roles of most microRNAs are still unknown.

View Article and Find Full Text PDF