Non-invasive evaluation of glymphatic function has emerged as a crucial goal in neuroimaging, and diffusion tensor imaging along the perivascular space (DTI-ALPS) has emerged as a candidate method for this purpose. Reduced ALPS index has been suggested to indicate impaired glymphatic function. However, the potential impact of crossing fibres on the ALPS index has not been assessed, which was the aim of this cross-sectional study.
View Article and Find Full Text PDFDespite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes.
View Article and Find Full Text PDFFilter exchange imaging (FEXI) is a double diffusion-encoding (DDE) sequence that is specifically sensitive to exchange between sites with different apparent diffusivities. FEXI uses a diffusion-encoding filtering block followed by a detection block at varying mixing times to map the exchange rate. Long mixing times enhance the sensitivity to exchange, but they pose challenges for imaging applications that require a stimulated echo sequence with crusher gradients.
View Article and Find Full Text PDFDespite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes.
View Article and Find Full Text PDFSulcation of the anterior cingulate may be defined by presence of a paracingulate sulcus, a tertiary sulcus developing during the third gestational trimester with implications on cognitive function and disease. In this cross-sectional study we examine task-free resting state functional connectivity and diffusion-weighted tract segmentation data from a cohort of healthy adults (< 60-year-old, n = 129), exploring the impact of ipsilateral paracingulate sulcal presence on structural and functional connectivity. Presence of a left paracingulate sulcus was associated with reduced fractional anisotropy in the left cingulum bundle and the left peri-genual and dorsal bundle segments, suggesting reduced structural organisational coherence in these tracts.
View Article and Find Full Text PDFAge-related white matter hyperintensities are a common feature and are known to be negatively associated with structural integrity, functional connectivity, and cognitive performance. However, this has yet to be fully understood mechanistically. We analyzed multiple MRI modalities acquired in 465 non-demented individuals from the Swedish BioFINDER study including 334 cognitively normal and 131 participants with mild cognitive impairment.
View Article and Find Full Text PDFSeveral studies have shown white matter (WM) abnormalities in Alzheimer's disease (AD) using diffusion tensor imaging (DTI). Nonetheless, robust characterization of WM changes has been challenging due to the methodological limitations of DTI. We applied fixel-based analyses (FBA) to examine microscopic differences in fiber density (FD) and macroscopic changes in fiber cross-section (FC) in early stages of AD ( = 393, 212 females).
View Article and Find Full Text PDFSports-related concussions may cause white matter injuries and persistent post-concussive symptoms (PPCS). We hypothesized that athletes with PPCS would have neurocognitive impairments and white matter abnormalities that could be revealed by advanced neuroimaging using ultra-high field strength diffusion tensor (DTI) and diffusion kurtosis (DKI) imaging metrics and cerebrospinal fluid (CSF) biomarkers. A cohort of athletes with PPCS severity limiting the ability to work/study and participate in sport school and/or social activities for ≥6 months completed 7T magnetic resonance imaging (MRI) (morphological T1-weighed volumetry, DTI and DKI), extensive neuropsychological testing, symptom rating, and CSF biomarker sampling.
View Article and Find Full Text PDFIn Alzheimer's disease, reconfiguration and deterioration of tissue microstructure occur before substantial degeneration become evident. We explored the diffusion properties of both water, a ubiquitous marker measured by diffusion MRI, and -acetyl-aspartate, a neuronal metabolite probed by diffusion-weighted magnetic resonance spectroscopy, for investigating cortical microstructural changes downstream of Alzheimer's disease pathology. To this aim, 50 participants from the Swedish BioFINDER-2 study were scanned on both 7 and 3 T MRI systems.
View Article and Find Full Text PDFBackground: Sulcation of the anterior cingulate may be defined by presence of a paracingulate sulcus, a tertiary sulcus developing during the third gestational trimester with implications on cognitive function and disease.
Methods: In this retrospective analysis we examine task-free resting state functional connectivity and diffusion-weighted tract segmentation data from a cohort of healthy adults (< 60-year-old, n = 129), exploring the impact of ipsilateral paracingulate sulcal presence on structural and functional connectivity.
Results: Presence of a left paracingulate sulcus was associated with reduced fractional anisotropy in the left cingulum ( = 0.
Purpose: Tensor-valued diffusion encoding can disentangle orientation dispersion and subvoxel anisotropy, potentially offering insight into microstructural changes after cerebral ischemia. The purpose was to evaluate tensor-valued diffusion MRI in human acute ischemic stroke, assess potential confounders from diffusion time dependencies, and compare to Monte Carlo diffusion simulations of axon beading.
Methods: Linear (LTE) and spherical (STE) b-tensor encoding with inherently different effective diffusion times were acquired in 21 acute ischemic stroke patients between 3 and 57 h post-onset at 3 T in 2.
There is increased interest in developing markers reflecting microstructural changes that could serve as outcome measures in clinical trials. This is especially important after unexpected results in trials evaluating disease-modifying therapies targeting amyloid-β (Aβ), where morphological metrics from MRI showed increased volume loss despite promising clinical treatment effects. In this study, changes over time in cortical mean diffusivity, derived using diffusion tensor imaging, were investigated in a large cohort (n = 424) of non-demented participants from the Swedish BioFINDER study.
View Article and Find Full Text PDFDiffusion-weighted magnetic resonance imaging (DW-MRI) aims to disentangle multiple biological signal sources in each imaging voxel, enabling the computation of innovative maps of tissue microstructure. DW-MRI model development has been dominated by brain applications. More recently, advanced methods with high fidelity to histology are gaining momentum in other contexts, for example, in oncological applications of body imaging, where new biomarkers are urgently needed.
View Article and Find Full Text PDFThe dependence of the diffusion MRI signal on the diffusion time carries signatures of restricted diffusion and exchange. Here we seek to highlight these signatures in the human brain by performing experiments using free gradient waveforms designed to be selectively sensitive to the two effects. We examine six healthy volunteers using both strong and ultra-strong gradients (80, 200 and 300 mT/m).
View Article and Find Full Text PDFDiffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue.
View Article and Find Full Text PDFA significant problem in diffusion MRI (dMRI) is the lack of understanding regarding which microstructural features account for the variability in the diffusion tensor imaging (DTI) parameters observed in meningioma tumors. A common assumption is that mean diffusivity (MD) and fractional anisotropy (FA) from DTI are inversely proportional to cell density and proportional to tissue anisotropy, respectively. Although these associations have been established across a wide range of tumors, they have been challenged for interpreting within-tumor variations where several additional microstructural features have been suggested as contributing to MD and FA.
View Article and Find Full Text PDFStructural brain MRI has proven invaluable in understanding movement disorder pathophysiology. However, most work has focused on grey/white matter volumetric (macrostructural) and white matter microstructural effects, limiting understanding of frequently implicated grey matter microstructural differences. Using ultra-strong spherical tensor encoding diffusion-weighted MRI, a persistent MRI signal was seen in healthy cerebellar grey matter even at high diffusion-weightings (b ≥ 10,000 s/mm).
View Article and Find Full Text PDFThe dependence of the diffusion MRI signal on the diffusion time carries signatures of restricted diffusion and exchange. Here we seek to highlight these signatures in the human brain by performing experiments using free gradient waveforms that are selectively sensitive to the two effects. We examine six healthy volunteers using both strong and ultra-strong gradients (80, 200 and 300 mT/m).
View Article and Find Full Text PDFBackground: Mean diffusivity (MD) and fractional anisotropy (FA) from diffusion MRI (dMRI) have been associated with cell density and tissue anisotropy across tumors, but it is unknown whether these associations persist at the microscopic level.
Purpose: To quantify the degree to which cell density and anisotropy, as determined from histology, account for the intra-tumor variability of MD and FA in meningioma tumors. Furthermore, to clarify whether other histological features account for additional intra-tumor variability of dMRI parameters.
Currently, little is known about the spatial distribution of white matter hyperintensities (WMH) in the brain of patients with Systemic Lupus erythematosus (SLE). Previous lesion markers, such as number and volume, ignore the strategic location of WMH. The goal of this work was to develop a fully-automated method to identify predominant patterns of WMH across WM tracts based on cluster analysis.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
October 2022
Background And Purpose: Diagnostic information about cell density variations and microscopic tissue anisotropy can be gained from tensor-valued diffusion magnetic resonance imaging (MRI). These properties of tissue microstructure have the potential to become novel imaging biomarkers for radiotherapy response. However, tensor-valued diffusion encoding is more demanding than conventional encoding, and its compatibility with MR scanners that are dedicated to radiotherapy has not been established.
View Article and Find Full Text PDFMarkers of downstream events are a key component of clinical trials of disease-modifying therapies for Alzheimer's disease. Morphological metrics like cortical thickness are established measures of atrophy but are not sensitive enough to detect amyloid-beta (Aβ)- related changes that occur before overt atrophy become visible. We aimed to investigate to what extent diffusion MRI can provide sensitive markers of cortical microstructural changes and to test their associations with multiple aspects of the Alzheimer's disease pathological cascade, including both Aβ and tau accumulation, astrocytic activation and cognitive deficits.
View Article and Find Full Text PDFMonitoring time dependence with diffusion MRI yields observables sensitive to compartment sizes (restricted diffusion) and membrane permeability (water exchange). However, restricted diffusion and exchange have opposite effects on the diffusion-weighted signal, which can lead to errors in parameter estimates. In this work, we propose a signal representation that incorporates the effects of both restricted diffusion and exchange up to second order in b-value and is compatible with gradient waveforms of arbitrary shape.
View Article and Find Full Text PDF