Publications by authors named "Nilsa Rivera-Del Valle"

Purpose: Amongst the epigenetically targeted therapies, targeting of the histone deacetylases (HDACs) has yielded numerous drugs for clinical use in hematological malignancies, but none as yet for acute lymphocytic leukemia (ALL). Single agent activity of HDAC inhibitors (HDACi) has been elusive in ALL, and has prompted study of combinatorial strategies. Because several HDACi raise levels of intracellular oxidative stress, we evaluated combinations of two structurally distinct HDACi with the redox active compound adaphostin in ALL.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability-some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells.

View Article and Find Full Text PDF

Histone acetylation is a posttranslational modification that plays a role in regulating gene expression. More recently, other nonhistone proteins have been identified to be acetylated which can regulate their function, stability, localization, or interaction with other molecules. Modulating acetylation with histone deacetylase inhibitors (HDACi) has been validated to have anticancer effects in preclinical and clinical cancer models.

View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDACi) have become a promising new avenue for cancer therapy, and many are currently in Phase I/II clinical trials for various tumor types. In the present study, we show that apoptosis induction and histone alterations by PCI-24781, a novel hydroxamic acid-based HDAC inhibitor, require caspase-8 and the adaptor molecule, Fas-associated death domain (FADD), in acute leukemia cells. PCI-24781 treatment also causes an increase in superoxide levels, which has been reported for other HDACi.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulation of cell survival. In general, moderate levels of ROS/RNS may function as signals to promote cell proliferation and survival, whereas severe increase of ROS/RNS can induce cell death. Under physiologic conditions, the balance between generation and elimination of ROS/RNS maintains the proper function of redox-sensitive signaling proteins.

View Article and Find Full Text PDF